# **POTENTIALS** RFCS AM PROJECT

Synergistic potentials of end-of-life coal mines and coal-fired power plants, along with closely related neighbouring industries: update and readoption of territorial just transition plans

# 101034042-POTENTIALS-RFCS-2020

# **Deliverable 3.2**

Scenarios classification map







# **Authors**

# Alicja Krzemień, Główny Instytut Górnictwa (GIG) Aleksander Frejowski, Główny Instytut Górnictwa (GIG)



Deliverable 3.2 | Page 2 / 62



| Deliverable 3.2             |                                                                           |  |  |  |
|-----------------------------|---------------------------------------------------------------------------|--|--|--|
| Due date of Deliverable     | 31.07.2022                                                                |  |  |  |
| Start - End Date of Project | 01.07.2021 - 30.06.2023                                                   |  |  |  |
| Duration                    | 2 years                                                                   |  |  |  |
| Deliverable Lead Partner    | GIG                                                                       |  |  |  |
| Dissemination level         | Public                                                                    |  |  |  |
| Work Package                | WP 3                                                                      |  |  |  |
| Digital File Name           | D3.2 Scenarios classification map                                         |  |  |  |
| Keywords                    | Criteria, Actions, Policies, Multicriteria analysis,<br>MULTIPOL software |  |  |  |





# **Table of contents**

| TABLE              | OF CONTENTS                                                            | 4  |  |  |  |
|--------------------|------------------------------------------------------------------------|----|--|--|--|
| <u>LIST O</u>      | FFIGURES                                                               | 6  |  |  |  |
| <u>LIST O</u>      | F TABLES                                                               | 7  |  |  |  |
| <u>EXECL</u>       | JTIVE SUMMARY                                                          | 8  |  |  |  |
| <u>1 IN</u>        | TRODUCTION                                                             | 9  |  |  |  |
| <u>2</u> <u>ST</u> | RUCTURE OF THE MULTIPOL METHOD                                         | 11 |  |  |  |
| <u>3 IN</u>        | PUT DATA AND EVALUATION PRINCIPLES                                     | 14 |  |  |  |
| 3.1 I              | NPUT DATA                                                              | 14 |  |  |  |
| 3.1.1              | TECHNICAL CRITERIA                                                     | 14 |  |  |  |
| 3.1.2              | MULTIPOL CRITERIA                                                      | 16 |  |  |  |
| 3.1.3              | ACTIONS AND MICRO-ACTIONS                                              | 16 |  |  |  |
| 3.1.4              | Policies                                                               | 20 |  |  |  |
| -                  |                                                                        | 21 |  |  |  |
|                    | Evaluation of technical criteria with respect to actions/micro-actions | 21 |  |  |  |
|                    | EVALUATION OF ACTIONS/MICRO-ACTIONS RELATED TO MULTIPOL CRITERIA       | 21 |  |  |  |
| 3.2.3              | EVALUATION OF POLICIES RELATED TO CRITERIA                             | 21 |  |  |  |
| <u>4</u> <u>SC</u> | HEDULE OF CONDUCTED ACTIVITIES AND SCIENTIFIC MEETINGS                 | 23 |  |  |  |
| 4.1 (              | ON-LINE WORKSHOP ON 22 JULY, 2022                                      | 23 |  |  |  |
|                    | WORKSHOP ON 18 AUGUST, 2022                                            | 26 |  |  |  |
|                    | WORKSHOP ON 23 AUGUST, 2022                                            | 28 |  |  |  |
|                    | ON-LINE WORKSHOP ON 1 SEPTEMBER, 2022                                  | 30 |  |  |  |
|                    | WORKSHOP ON 2 SEPTEMBER, 2022                                          | 33 |  |  |  |
|                    | WORKSHOP ON 13 SEPTEMBER, 2022                                         | 35 |  |  |  |
|                    | ON-LINE WORKSHOP ON 14 SEPTEMBER, 2022                                 | 36 |  |  |  |
| 4.8                | WORKSHOP ON 28 OCTOBER, 2022                                           | 37 |  |  |  |
| <u>5 RE</u>        | SULT OF ANALYSIS AND DISCUSSION OF THE RESULTS                         | 43 |  |  |  |
|                    | RESULT FOR THE ANALYSIS TECHNICAL CRITERIA AND ACTIONS/MICRO-ACTIONS   | 43 |  |  |  |
| 5.2 I              | .2 RESULT FOR THE MULTIPOL ANALYSIS FOR ACTIONS 45                     |    |  |  |  |



# **POTENTIALS** RECS AM PROJECT

| 5.2.1        | EVALUATION OF ACTIONS RELATED TO POLICIES                 | 45 |
|--------------|-----------------------------------------------------------|----|
| 5.2.2        | PROFILE MAP: ACTIONS/POLICIES                             | 46 |
| 5.2.3        | MAP OF CLASSIFICATION SENSITIVITY: ACTIONS/POLICIES       | 47 |
| 5.2.4        | CLOSENESS MAP BETWEEN ACTIONS AND POLICIES                | 48 |
| 5.3 F        | RESULT FOR THE MULTIPOL ANALYSIS FOR MICRO-ACTIONS        | 49 |
| 5.3.1        | EVALUATION OF MICRO-ACTIONS RELATED TO POLICIES           | 49 |
| 5.3.2        | PROFILE MAP: MICRO-ACTIONS VERSUS POLICIES                | 50 |
| 5.3.3        | MAP OF CLASSIFICATION SENSITIVITY: MICRO-ACTIONS/POLICIES | 51 |
| 5.3.4        | CLOSENESS MAP BETWEEN MICRO-ACTIONS AND POLICIES          | 52 |
| <u>6 CO</u>  | ONCLUSIONS AND LESSONS LEARNT                             | 54 |
| <u>REFER</u> | ENCES                                                     | 58 |
| <u>ANNE</u>  | X 1: MULTIPOL MATRIX INSTRUCTION MANUAL                   | 59 |

#### ANNEX 2: THE FIRST VERSION OF THE MATRIXES WITH CRITERIA, POLICES AND ACTIONS 60





# **LIST OF FIGURES**

| FIGURE 1. SCHEME OF ACTIONS TAKEN UNDER WP 3.2                                       | 12  |
|--------------------------------------------------------------------------------------|-----|
| FIGURE 2. CUMULATIVE LAYERED GRAPH SHOWING THE IMPACT OF TECHNICAL CRITERIA ON ACTIO | ONS |
|                                                                                      | 43  |
| FIGURE 3. CUMULATIVE LAYERED GRAPH SHOWING THE IMPACT OF TECHNICAL CRITERIA ON MICR  | 0-  |
| ACTIONS                                                                              | 44  |
| FIGURE 4. THE POLICY SCORE OBTAINED FOR EVERY ACTION                                 | 47  |
| FIGURE 5. DEPENDENCE BETWEEN ACTION SCORE RELATED TO THE STANDARD DEVIATION          | 48  |
| FIGURE 6. ACTION/POLICY CLOSENESS MAP                                                | 49  |
| FIGURE 7. THE POLICY SCORE OBTAINED FOR EVERY MICRO-ACTION                           | 51  |
| FIGURE 8. DEPENDENCE BETWEEN MICRO-ACTION SCORE RELATED TO THE STANDARD DEVIATION    | 52  |
| FIGURE 9. MICRO-ACTION/POLICY CLOSENESS MAP                                          | 53  |





# LIST OF TABLES

| TABLE 1. TECHNICAL CRITERIA AND THEIR DESCRIPTIONS                                       | 15 |
|------------------------------------------------------------------------------------------|----|
| TABLE 3. ACTIONS AND THEIR DESCRIPTIONS                                                  | 17 |
| TABLE 4. MICRO-ACTIONS AND THEIR DESCRIPTIONS                                            | 19 |
| TABLE 5. POLICIES AND THEIR DESCRIPTIONS                                                 | 20 |
| TABLE 6. RESULTS FROM AN EXPERT ANALYSIS WITH POLISH POWER PLANTS ASSOCIATION AND        |    |
| TAURON STAFF - ACTION A9                                                                 | 29 |
| <b>TABLE 7.</b> RESULTS FROM AN EXPERT ANALYSIS WITH POLISH POWER PLANTS ASSOCIATION AND |    |
| TAURON STAFF - ACTION A11                                                                | 30 |
| <b>TABLE 8.</b> RESULTS FROM AN EXPERT ANALYSIS WITH POLISH POWER PLANTS ASSOCIATION AND |    |
| TAURON STAFF – MICRO-ACTIOM AM1                                                          | 32 |
| TABLE 9. RESULTS FROM AN EXPERT ANALYSIS WITH PROF. EUGENIUSZ KRAUSE - ACTION A10        | 33 |
| TABLE 10. RESULTS FROM AN EXPERT ANALYSIS WITH MR. ZBIGNIEW GIELECIAK – PRESIDENT OF TH  | ΗE |
| REGIONAL CENTRE FOR WATER AND WASTEWATER MANAGEMENT - ACTION A11                         | 35 |
| TABLE 11. RESULTS OF REVISIONS OF ACTIONS - MULTIPOL CRITERIA                            | 37 |
| TABLE 12. RESULTS OF REVISIONS OF MICRO-CTIONS - MULTIPOL CRITERIA                       | 38 |
| TABLE 13. EVALUATION OF ACTIONS WITH RESPECT TO MULTIPOL CRITERIA                        | 40 |
| TABLE 14. EVALUATION OF MICRO-ACTIONS WITH RESPECT TO MULTIPOL CRITERIA                  | 41 |
| TABLE 15. EVALUATION OF POLICIES WITH RESPECT TO MULTIPOL CRITERIA                       | 42 |
| TABLES 16 . RESULT FOR THE ANALYSIS TECHNICAL CRITERIA AND ACTIONS                       | 43 |
| TABLES 17. RESULT FOR THE ANALYSIS TECHNICAL CRITERIA AND MICRO-ACTIONS                  | 44 |
| TABLE 18. EVALUATION OF ACTIONS RELATED TO POLICIES                                      | 45 |
| TABLE 19. EVALUATION OF MICRO-ACTIONS RELATED TO POLICIES                                |    |
| TABLE 20. SUMMARY RESULTS OF MULTIPOL ANALYSIS (ACTIONS)                                 | 54 |
| <b>TABLE 21</b> . SUMMARY RESULTS OF MULTIPOL ANALYSIS (MICRO-ACTIONS)                   | 56 |





#### **Executive summary**

In this Task, a multi-criteria analysis of the previously developed scenarios (actions)was performed using MULTIPOL software.

To achieve this goal, first, it was necessary to select representative actions (scenarios) and micro-actions (micro-scenarios), among the ones developed under Task 3.1 Constructing exploratory scenarios, using morphological analysis and addressing business models that rely on renewable energy, contribute to the circular economy or scale energy storage. Mainly, the scenarios and micro-scenarios that can be developed without obtaining specific synergies from end-of-life mine sites, coal-fired power plants (and related infrastructure), and closely related neighbouring industries were not considered here.

Second, it was necessary to select several evaluation criteria emanating from the goal and objectives of the study. Defining criteria was the outcome of interaction among researchers, external experts and the stakeholders in a participatory planning process, aiming at grasping priorities and embodying them in the subsequent processes.

Third, policies were selected directly relating to one of the Commission priorities for 2019-2024: the European Green Deal.

Once actions/micro-actions, criteria and policies were selected, the evaluation of actions/micro-actions and policies related to criteria was performed. These evaluations were also developed with the participation of POTENTIAL partners and external experts from the countries involved in the project.

The result was a rank of actions and micro-actions by policy and a closeness map between actions and micro-actions and policies that can be used to determine which actions are to be chosen whilst taking into consideration policies as well as convergences between policies and given actions.

The results obtained in this study provide a good starting point for the design of specific business models, which often will be combinations of actions and microactions.





# **1** Introduction

The general objective of the POTENTIALS Accompanying Measure is to identify and assess the challenges, opportunities and impacts related to the synergistic potentials of end-of-life mine sites and coal-fired power plants in transition (and related infrastructure), along with closely related neighboring industries.

It will take advantage of their joint potential to stimulate new economic activities, develop jobs and economic value, especially to Coal Regions in Transition, and support the update and re-adoption of territorial just transition plans.

During Task 3.1, the construction of exploratory scenarios developing business models that rely on renewable energy, contribute to the circular economy or scale energy storage was accomplished. The result of this work were the "scenarios space", characterized by all the feasible combinations of components and variables of the system.

The main objectives of this deliverable are:

- Evaluating business models option from coupled coal mines and coal-fired power plants in the process of their closure, as well as closely related neighboring industries using multicriteria assessment.
- Building a scenario classification map to creating a ranking of profiles from which the best business model options can be obtained.

Task 3.2 that will be led by GIG with the cooperation of all the partners will use multicriteria analysis as the methodology to explore possible recombination of the elements that make up the studied system.

The MORPHOL tool, created by Michel Godet and Francois Bourse and developed by the Institut d'Innovation Informatique pour l'Entreprise 3IE, will be used for this purpose.

Like all other multi-criteria methods, MULTIPOL compares different actions or solutions to a problem, related to many criteria and policies. The aim of using MULTIPOL is to help in decision making by creating a simple and evolutionary analysis matrix of available actions and solutions.

MULTIPOL (acronym for MULTI-criteria and POLicy) is one of the simplest existing multi-criteria applications but by no means the least useful. It is based on the evaluation of actions through means of weighted average, similar to the evaluation of students in a class calculated according to coefficients per subject.





Classic multi-criteria approaches are used in MULTIPOL: census possible actions; analyse consequences and elaborate criteria; evaluate actions; define policies and sort actions. MULTIPOL is innovative because of its simplicity and ease in using. Hence, every action is evaluated taking into consideration each criterion with the aid of a simple scale. Evaluation is possible via either questionnaires or meetings with experts, where a consensus is necessary.

Furthermore, action evaluation is not uniform in that different contexts related to the objective at hand are also taken into consideration. One of these contexts is a policy: a set of weights tuned to criteria. These sets of weights will represent different value systems for decision makers; strategic options; multiple scenarios; and evaluations including a time domain. In practice, experts assign a weight for every policy, on the basis of the criteria ensemble.

For every policy, MUTLIPOL assigns an average score to actions. With this is created a table of classification profiles compared to actions related to policies. Risk awareness relative to uncertainty or to conflicting hypotheses is attained via the action classification map, which in turn is created from the mean and standard deviation of scores obtained for each policy.

MULTIPOL is a simple method which takes into consideration uncertainty and tests the robustness of results coming from different policies. It is evolutionary thanks to its simplicity. In order to enrich the analysis, new criteria, weights and actions can be included both during and after the study. The simplicity of aggregate criteria (weighted mean) ensures the compatibility between actions.

However, if the goal becomes to create a map composed of many actions, difficulties arise in considering synergies, incompatibilities and the repeated use of selected actions. This inconvenience is found in all multi-criteria methods. A more detailed analysis is needed to overcome this obstacle, in all of these methods.

The results of MULTIPOL multicriteria analysis will be a good starting point for the design of specific business models, which often will be combinations of various actions and micro-actions.





# 2 Structure of the MULTIPOL method

The MULTIPOL software supports the evaluation process and helps policy makers to make decisions within different decision environments. In such a context, it evaluates the actions/micro-actions delivered by the MORPHOL software (actions), attempting at the same time to define strategic directions and choices for the effective implementation of each action (Stratigea, 2013). Another words MULTIPOL software constitutes a discrete multicriteria evaluation method, capable of dealing with qualitative information [Godet 1999, Godet 2002]. The method is used for the evaluation of alternative scenarios, integrating a participatory approach through the involvement of experts or citizens, depending on the problem at hand. The specific method is based on the evaluation of policies and actions/micro-actions by means of a weighted average, taking into consideration the uncertainty and testing the effectiveness of different policies and actions/micro-actions as to the evaluated scenarios (possible option). In general, MULTIPOL's aim is to help decision-making by drawing up a simple and evolving analysis grid of the different actions, micro-actions or other solutions available to the decision-maker [Godet 2002, Panagiotopoulous & Stratigea 2014].

The basic input of the MULTIPOL evaluation method consists of [Godet 2004, Stratigea & Giaoutzi 2012]:

- **Criteria**: defined as measurable aspects of judgment by which a dimension of the various choice possibilities under consideration can be characterized [Voogd 1983]. They are considered as the cornerstone of any evaluation process for rating the performance of alternative scenarios, policies and policy measures involved in the MULTIPOL evaluation process. Two groups of criteria were included in the analyses: technical criteria (relating to the technical aspects of closing coal mines and coal-fired power plants, developed in WP 2.3; they were not used in the multi-criteria analysis, but only in the statistical analysis) and criteria related to the scenarios for using decommissioned coal mines and coal-fired power plants 3.1 (Figure 1).
- Actions/Micro-actions: defined as structured future developments [Lindgren & Bandhold 2003, Ringland 2002, Robinson 1990, Schwartz 1991], within which goal and objectives set for the system/problem at hand are achieved. The analyses included actions (which can be independently implemented in a closed coal mine and/or coal-fired power plant) and micro-actions (as an accompanying activities with actions and/or other micro-actions) developed as a morphological analysis with the MORPHOL software in Task 3.1 (Figure 1).
- **Policies**: as strategies for the achievement of goals and objectives in a specific planning exercise, which are closely relating to the political, social, economic and physical context, within which the evaluation is taking place [Stratigea &





Papadopoulou 2013b, Stratigea & Giaoutzi 2012]. Policies that directly relate to the Green Deal policy are included in the analyses (Figure 1).

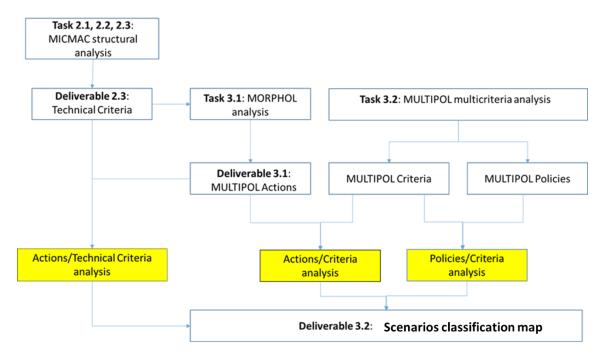



Figure 1. Scheme of actions taken under WP 3.2

Below are presented the results obtained from the MULTIPOL evaluation exercise, used for building the policy options in order to achieve the targets set. These results refer to the outcome of the evaluation of actions/micro-actions in respect of policies and the evaluation of policies in respect of actions/micro-actions.

Each multicriteria evaluation results in:

- *table of scores*, calculated by applying the set of weights of the 'matrix evaluation of actions/micro-actions related to criteria' to the 'matrix of policies related to criteria'. Other information such as the mean, standard deviations and the rank of actions/micro-actions by policy can also be found in this matrix.
- *profile map*, presenting the performance of policy measures in respect of policies and the performance of policies with respect to actions/micro-actions,
- *sensitivity map*, represents action/micro-actions score (x-axis) related to the calculated standard deviation (y-axis), and
- closeness map this is achieved via Correspondence Analysis (CA). CA is a
  multivariate statistical technique proposed by (Dodge, 2003). It is conceptually
  similar to principal component analysis but applies to categorical rather than
  continuous data. In a similar manner to principal component analysis, it
  provides a means of displaying or summarizing a set of data in two-dimensional





graphical form. Its aim is to display on a two-dimensional plane any structure hidden in the multivariate setting of the data table.



Deliverable 3.2 | Page 13 / 62



# 3 Input data and evaluation principles

The instructions for completing all the matrices are presented in Annex 1, as follows:

- Evaluation of actions and micro-actions with respect to technical criteria.
- Evaluation of actions and micro-actions with respect to MULTIPOL criteria.
- Evaluation of policies with respect to MULTIPOL criteria.

Technical criteria refers to the criteria developed using structural analysis in *Task 2.3 Identifying the key variables*.

MULTIPOL criteria refers to evaluation criteria emanating from the goal and objectives of the study.

## 3.1 Input data

#### 3.1.1 Technical criteria

The first ten technical criteria were developed using structural analysis performed with the MICMAC software in *Task 2.3 Identifying the key variables*. Technical criteria CT11 and CT12 were developed during works in *Task 3.1 Constructing exploratory scenarios* (technical criteria related to economics, which was not included in *Task 2.3 Identifying the key variables*). The technical criteria are shown in Table 1.





#### Table 1. Technical criteria and their descriptions

| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Technical Criteria CT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| CT1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Character of the local area / proximity to<br>industry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | This variable refers to the characteristics of the surrounding areas: urban, suburban, villages, agricultural, industrial, post-industrial, etc. The character of local areas determines the kind and quantities of infrastructure facilities and connectivity, the local economic development, the ecological value and potentials of the area, etc. The characteristic of the surrounding areas will be crucial for some business opportunities.                                                                                                                                                                                 |  |  |
| CT2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Available space for new technologies/projects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | This variable refers to the accessible space for new technologies installation (apart from waste disposal areas). The space consists of all the a provided from the surroundings of coal mines and power plants. The available area of an end-of-life coal mine and power plant that can be a for the deployment of alternative technologies is considered a major asset (apart from waste disposal areas).                                                                                                                                                                                                                        |  |  |
| СТЗ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Available infrastructures for new technologies/projects The variable refers to infrastructure that may facilitate the adaptation of the power plant (internal and external). Internal infrastruction, dust reduction, demineralization, water decarbonation, hydrogen cooling, turbine oil installation, desulphurization, NO <sub>x</sub> reduction, dust reduction steam production, coal transportationinfrastructure, CO <sub>2</sub> capture installation. External infrastructure: water treatment plant, raw v station, landfills, temporary storage areas, power distribution/transmission grid connection, water accessibility, road infrastructure. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| CT4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Concessions, contracts and other regulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Variable refers to obligations such as to provide thermal energy supply after the decommissioning or arising from concessions, contracts and others, which may condition the future repurposing of the coal power plant. It refers to also, the amount of time (years) during which the power plant will still have the concession for power generation, can be considered.                                                                                                                                                                                                                                                        |  |  |
| CT5Land use restrictionsThis variable refers to any kind of land use restrictions different from waste heaps, mainly related with territorial development<br>the authorities, that may condition specific industrial, commercial, business centers or residential deployments. The optim<br>should be based on socio-economic and environmental criteria helping to achieve sustainable development with the inter<br>economic gains and improving environmental quality, but it is limited by present territorial development plans that, in some of |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | This variable refers to any kind of land use restrictions different from waste heaps, mainly related with territorial development plans approved by the authorities, that may condition specific industrial, commercial, business centers or residential deployments. The optimization of the areas should be based on socio-economic and environmental criteria helping to achieve sustainable development with the intention of increasing economic gains and improving environmental quality, but it is limited by present territorial development plans that, in some cases, are susceptible to be changed by the authorities. |  |  |
| СТ6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Waste heaps physical characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Variable refers to waste heap physical characteristics - geotechnical stability, angel of natural response, geomorphic shape and waste heap's height and area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| CT7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Waste heaps development constraints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Variable refers to waste heap development constraints (gas and fire hazards, status of reclamation).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| СТ8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | This variable refers to the specific characteristics of the materials that are deposited in the waste heaps, as well as if they a<br>Material type deposited on the waste extractive waste and coal processing waste or mixed together. Depending on the mining companies, extracting wastes and coal                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| СТ9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The variable describes the flooding status of a liquidated mine-related to the depth to which it was flooded and the flooded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| CT10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pumped water chemistry/quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The variable determines the quality and chemistry of pumped mining water (salt, hazardous substances).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| CT11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Investment costs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The variable refers to the investment costs to be taken into account when designing the use of closed coal mines/electric power plants to adapt the existing infrastructure to new economic activities (renovations, modifications, purchase of new equipment).                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| CT12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Returns on investments (benefits)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Returns on investment, understood not only as financial (economic) returns in the strict sense, but also environmental, and social returns.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |





#### 3.1.2 MULTIPOL criteria

The evaluation taking place by use of the MULTIPOL software was based upon a number of evaluation criteria, emanating from the goal and objectives of the study. Defining criteria were the outcome of interaction among researches, external experts and the stakeholders, in the context of a participatory planning process, aiming at grasping priorities, and embodying them in the next processes. The interface in the MULTIPOL software gives access to input main criteria information:

- abbreviation (short label),
- name (long label),
- weight (the weight for all criteria was taken as '1'), and
- description.

| No. | MULTIPOL Criteria CM           | Description                                                                                                                      |
|-----|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| CM1 | Energy security                | Reliable, affordable acces to all fuels and energy sources (IEA)                                                                 |
| CM2 | Renewable resources (greening) | The elimination of the use of non-renewable resources, use of renewable sources as much as technically and economically possible |
| CM3 | Investment cost                | Action investment cost - CAPEX (the higher cost, the more demanding investment)                                                  |
| CM4 | Benefits                       | Economic benefits, added-value from investment                                                                                   |
| CM5 | Regional development           | Increased competitiveness of the region, prosperity, welfare, commercial and social impact on the area                           |
| CM6 | Environment                    | Environmental and ecological impact                                                                                              |
| CM7 | Job creation                   | Impact on employment                                                                                                             |

#### Table 2. MULTIPOL criteria and their descriptions

#### 3.1.3 Actions and micro-actions

Actions and micro-actions were developed under *Task 3.1 Constructing exploratory scenarios* and are presented with descriptions in Table 3 (actions) and Table 4 (micro-actions). This interface in the MULTIPOL software gives access to input main actions/micro-actions information:





- abbreviation (short label),
- name (long label), and
- description.

#### Table 3. Actions and their descriptions

| No | Short label | Long label                                                                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----|-------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | A1_VIRTUAL  | Virtual power plant                                                           | The action refers to the renewable energy produced (solar<br>photovoltaic and wind power on the waste heaps,<br>unconventional pumped hydro storage using dense fluids,<br>geothermal energy), will be sold to the grid or used to<br>power companies with constant energy consumption<br>located in the near area, such as factories or green data<br>centers.                                                                                                                                                                                                                                                                                                               |
| 2  | A2_H2       | Green hydrogen<br>plant                                                       | The action refers to green hydrogen plant where<br>renewable hydrogen will be produced by electrolysis of<br>mine water and electricity from renewable sources. It is a<br>clear alternative to selling surplus of generated renewable<br>energy to the grid or to power industries with constant<br>energy consumption. The energy produced will be stored<br>and used to power electro-intensive industries located<br>close to the area.                                                                                                                                                                                                                                   |
| 3  | A3_ECOPARK  | Eco-industrial park                                                           | The action refers to eco-industrial parks, which are an<br>integrated alternative for sustainable energy generation<br>technologies and circular economy contributions at these<br>sites. The main objective of industrial parks is to reduce<br>waste and pollution by promoting short distance transport,<br>optimizing material, resource and energy flows within the<br>industrial parks. Sustainable energy generation<br>technologies comprise solar and wind energy production<br>together with energy storage, as well as geothermal<br>energy in order to provide cooling/heating to the<br>companies/industries that will take part of the Eco-<br>industrial park. |
| 4  | A4_TOURIST  | Cultural heritage<br>and<br>sports/recreations<br>areas using green<br>energy | The action assumes the production of green energy at the coal mine and coal-fired power plant while adapting them for tourism purposes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5  | A5_PANELS   | Floating PV panels<br>at flooded open-pit<br>coal mine                        | The action refers the use of floating PV panels at flooded<br>open-pit coal mines. The lake water will be used for the<br>required cooling of the floating PV panels. Possible<br>synergies include forest restoration of the broader area,<br>whereas extracting critical metals from mining wastes will<br>contribute to a circular economy.                                                                                                                                                                                                                                                                                                                                |





| 6  | A6_PHS     | Pumped<br>hydroelectric<br>storage (PHS) at<br>former open-pit<br>coal mines     | The action refers to implementing pumped hydroelectric<br>storage (PHS) at former open-pit coal mines. The synergies<br>that will be developed include a wind farm and a solar<br>power plant in the broader mining area. In addition,<br>synergies with local customers who own small-scale solar<br>panels will be arranged. Using wastewater in soil additives<br>coupled with the extraction of critical metals from mining<br>wastes will contribute to a circular economy.                                                                                                                                                                                                                                                               |
|----|------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7  | A7_FISHES  | Fisheries in flooded<br>open-pit coal mines                                      | The development of fisheries in flooded open-pit coal<br>mines is an unconventional The action of incremental<br>innovation that integrates already developed methods that<br>have not been implemented together at a former coal<br>mine. Energy will be generated via biogas produced by<br>fishery residues with the anaerobic digestion method.<br>Developing an ecotoxicity laboratory will provide constant<br>monitoring of the water quality. The laboratory will also<br>promote significant scientific research concerning the<br>effects of possible hazardous substances on fish. The<br>production of fish by-products from fish wastes, such as<br>fish glue, oil for paints and resins, will contribute to circular<br>economy. |
| 8  | A8_C/O_CGT | Combined-cycle gas<br>turbine (CCGT)<br>power plant<br>powered by natural<br>gas | The action refers to use of coal-fired power plant<br>infrastructure to combined-cycle plant works to produce<br>electricity and captures waste heat from the combined<br>cycle and open cycle gas turbines to increase efficiency and<br>electrical output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9  | A9_MINEGAS | Mine gas utilization<br>for gas-powered<br>CHP power units                       | The action refers to use of utilization mine gases for gas-<br>powered CHP (Combined Heat and Power) units.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10 | A10_SMR    | Small modular<br>reactors (SMRs)                                                 | The action assumes the use of coal-fired power plant/mine<br>infrastructure to produce clean energy using small modular<br>reactors (SMRs).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11 | A11_BIOFUE | Biofuels<br>combustion energy<br>plant                                           | The action refers to the change from fossil fuel combustion power plants to energy production by processing biofuels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12 | A12_SALT   | Molten salt plant                                                                | Molten salt plants are using energy storage in the form of<br>tanks with heated molten salt. They allow to smooth the<br>fluctuation of renewable energies such as solar and wind.<br>Nevertheless, and in order to achieve better efficiencies,<br>they preferable should be coupled with concentrated solar<br>power (CSP) plants where a heat transfer fluid (HTF) such<br>as oil absorbs the energy.                                                                                                                                                                                                                                                                                                                                       |





| 13 | A13_APV | Agrophotovoltaics<br>(APV) at former<br>open-pit coal mine<br>areas | The action concerns the implementation of<br>agrophotovoltaics (APV) at former open-pit coal mines.<br>Synergies with local customers who own small-scale solar<br>panels will be arranged. Forest restoration at the areas of<br>the open pit mine will be considered for further reduction<br>of GHG emissions. |
|----|---------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----|---------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| N° | Short label | Long label                                                                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----|-------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | AM1_BATT    | Ancillary services<br>provided by<br>batteries                              | Ancillary services run regulatory operations in the<br>background, performing multiple functions - monitoring,<br>balancing and repairing the energy infrastructure. In the<br>event of a disturbance, ancillary services work to restore<br>values such as voltage and frequency back to their<br>normal range. To date, a major portion of these services<br>have primarily been performed by conventional power<br>stations, however, in future, renewable energy providers<br>will also have to make a contribution towards grid<br>stability. Furthermore, seamless coordination is required<br>between grid and plant operators." "In order to<br>guarantee a high level of quality, reliability and security<br>of electricity transmission and distribution, the grid<br>operators need to work continuously to keep the<br>frequency, voltage and load of the grid operating<br>equipment within the permitted tolerance limits or to<br>return them to their normal range after a disturbance.<br>These services, which are essential for maintaining a<br>functioning electricity supply, are called ancillary<br>services. These are split into four different ancillary<br>services: operational management, frequency control,<br>voltage control and system restoration. |
| 2  | AM2_HEAPS   | Recovery of<br>resources from<br>coal mining waste<br>heaps                 | The action refers to the circular mining technology based<br>on waste heap materials recovery. The fact that wastes<br>are landfilled separately according to their<br>characteristics is very important. On the other hand, it<br>should be possible to install a material recovery plant,<br>something that has to be permitted according to the<br>territory development plant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3  | AM3_C2H4    | Usage of methane<br>from<br>degasification<br>units on closed<br>coal mines | The action refers to use of methane from degasification units on closed coal mines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

## Table 4. Micro-actions and their descriptions





RFCS AM PROJECT

| 4  | AM4_WATER  | Circular mining<br>technologies for<br>pumped water<br>material recovery. | The action refers to the circular mining technologies The action for pumped water material recovery - should be necessary to install a mine water treatment plant and no land use restriction are foreseen.                                                                                                                                                                                                       |
|----|------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  | AM5_FOREST | Forest restoration<br>at former open-pit<br>coal mines                    | The action refers to reforestation of the former open-pit<br>coal mines will give several advantages that include the<br>decrease of GHG emissions, as well as the protection<br>against natural hazards (such as landslides and flooding<br>events).                                                                                                                                                             |
| 6  | AM6_IT     | Large scale IT<br>infrastructure -<br>power plant                         | The action refers to use of coal-fired power plant<br>infrastructure for "mining" cryptocurrencies (bitcoin,<br>stabecoin, etc) and secure data collection and storage<br>using green energy.                                                                                                                                                                                                                     |
| 7  | AM7_THERMA | Geothermal<br>energy                                                      | The action refers to the use of closed coal mines for geothermal energy production.                                                                                                                                                                                                                                                                                                                               |
| 8  | AM8_GRAVIT | Gravitricity                                                              | The action refers to gravitricity system uses heavy<br>weight configurations in a deep shaft of closed coal<br>mines, suspended by a number of cables, each of which<br>is engaged with an electric winch capable of lifting its<br>share of the weight. Electricity is stored in the form of<br>potential energy by raising the weights. Power is then<br>generated by lowering the weights to turn a generator. |
| 9  | AM9_FLUIDS | Dense fluids                                                              | The action refers to production and storage energy using dense fluids.                                                                                                                                                                                                                                                                                                                                            |
| 10 | AM10_HPUMP | Underground<br>hydro-pumping                                              | The action refers to production and storage energy in<br>the closed coal mine shafts using hydro-pumping<br>(capacity less than 20MW).                                                                                                                                                                                                                                                                            |

#### 3.1.4 Policies

Policies are presented with descriptions in Table 5, representing the policies that directly relate to one of the Commission priorities for 2019-2024: the European Green Deal. Climate change and environmental degradation are an existential threat to Europe and the world. To overcome these challenges, the European Green Deal will transform the EU into a modern, resource-efficient and competitive economy.

 Table 5. Policies and their descriptions





| No | Short label | Long label/description               |
|----|-------------|--------------------------------------|
|    |             |                                      |
| 1  | Climate     | No net emissions of greenhouse gases |
|    |             | by 2050.                             |
|    |             | -                                    |
| 2  | Growth      | Economic growth decoupled from       |
|    |             | resource use.                        |
|    |             |                                      |
| 3  | People      | No person and no place left behind.  |
|    |             |                                      |
|    |             |                                      |

This interface in the MULTIPOL software gives access to input main actions/microactions information:

- abbreviation (short label),
- long label (description), and
- weight (the weight for all policies was taken as '1').

# **3.2** Evaluating principles

#### **3.2.1** Evaluation of technical criteria with respect to actions/micro-actions

Assessment technical criteria (CT) with respect to actions and micro-actions was performed. The impact of technical criteria (labelled CT1 to CT12) with respect to actions (labelled A1 to A13) and micro-actions (labelled from AM1 to AM10) with respect to technical criteria were evaluated. The scoring of actions/micro-actions with respect to criteria goes from "-20" (the strongest negative impact) to "0" (no impact/neutral impact), and to "+20" (the strongest positive impact).

#### 3.2.2 Evaluation of actions/micro-actions related to MULTIPOL criteria

Evaluation of actions (labelled from A1 to A13) and micro-actions (labelled from AM 1 to AM10) related to MULTIPOL criteria (labelled from CM1 to CM7) were made. In other words, the Matrix values corresponded to actions/micro-actions evaluation with respect to MULTIPOL criteria. The scoring of actions/micro-actions with respect to criteria goes from "0" (minimum score) to "20" (maximum score).

#### 3.2.3 Evaluation of policies related to criteria

Evaluation of policies (labelled from P1 to P3) related to MULTIPOL criteria (labelled from CM1 to CM7) were performed. In other words, the matrix values corresponded to policy evaluation with respect to MULTIPOL criteria. As this concerns the set of criteria





weights, the sum in the row must always equals 100. There is no maximum limit to the value of the weights entered – in the extreme case one weight equals 100, so the rest of the scoring is rated 0.





# 4 Schedule of conducted activities and scientific meetings

In order to obtain the final list of actions, micro-actions and criteria a set of workshops, both in person and online were conducted. The meetings gathered the experience of consortium partners of the project together with external experts/stakeholders.

The most important contributions are presented below.

## 4.1 On-line workshop on 22 July, 2022

The first meeting discussed the first version of the matrixes. Eleven technical criteria (10 criteria from Deliverable 2.3 and one, new criteria – investment cost), 4 policies and 27 scenarios (actions/micro-actions) were proposed, which can be found in Annex 2, and were sent to all Partners before meeting on 22 July, 2022.

The 27 scenarios were assigned to three groups: group 1 (scenarios that may not be feasible - red cells in Annex 2), group 2 (scenarios that complementary to other, and should be analyzed as micro-scenarios – green cells in Annex 2), and group 3 (there were doubts about their inclusion as actions – orange cells in Annex 2), and group 4 (other scenarios – white cells in Annex 2) - and then, finally, they were assigned into actions and micro-actions.

The following comments and conclusions to the first version of the matrixes with criteria, policies and actions were offered (Annex 2):

Experts from Technische Hochschule Georg Agricola (THGA) agreed on four categories of Policies, including "energy security" that was afterwards considered one of the MULTIPOL criterion. THGA proposed to denominate "economic growth" as "regional economic growth" because the experts were taking into consideration certain mine and plant locations and not the macroeconomic level. Moreover, they agreed that investment costs must be part of the list of criteria, because that is an economic necessity.

THGA experts also proposed the following changes to the definition of policies:

- Relating to "energy security" they proposed to replace the first sentence by: "Energy security is the availability to fulfill (regional/national/European) energy needs anytime.
- Relating to "job creation" they proposed an addition at the end: "... Certainly, the net effect has to take into account the job losses in the replaced conventional energy production."





- Relating to "climate mitigation" they believed it is difficult to understand the second half of the sentence, and proposed instead "... including positive effects on air quality."
- Relating to "economic growth" they proposed to add always the word "regional" before economic growth, and furthermore in the last sentence of the definition made an inclusion: "... as and so far new green jobs and their added value are place-based in the regions where the old coal mines and power plants had been and that means in a broader perspective they will be located in the EU."

At the request of THGA experts the principles of assessment and the rating scales in the matrixes were explained: for matrix criteria – action, and for matrix policy – action.

Experts from Central Mining Institute (GIG) agreed that the addition of investment costs is a good criteria, as many investments will not be realized due to very high costs, which should be estimated at this stage to avoid losses. They proposed to add also a criteria related to the immediate neighborhood of the socio-economic area, as it can be expected that, as a criteria for the implementation of this scenario, it will be necessary to secure the labor force, road infrastructure and social acceptance (the proximity of some solutions and their implementation scenarios may cause resistance from the local community).

Relating to "policies" GIG experts proposed to add space planning policies and environmental policies.

It was also suggested to combine action A26 (Biomass combustion energy plant) with action A27 (Biofuels combustion energy plant), and to combine action A5 (Cultural heritage and sports using green energy), action A21 (Green energy relax and extreme mine & plant) and action A25 (Cultural/Recreation areas).

Experts from HUNOSA pointed out the necessity to prepare a clear lists of Criteria, Policies and Actions for the external use. In this respect they thought it can be confusing to score the actions/criteria table and policies/criteria).

Experts from CERTH regarding the actions from "uncolored" cells (annex 2) agreed that, all of these are feasible, especially actions A2 (Green hydrogen plant), A6 (Floating PV panels at flooded open-pit coal mines), A7 (Agrophotovoltaics (APV) at former open-pit coal mine areas), A8 (Pumped hydroelectric storage (PHS) at former open-pit coal mines), A11 (Combined Cycle Gas Turbines - CCGT plant), A14 (Open cycle gas turbine, block heat and power plant, gas engine), and A26 (Biomass combustion energy plant) have a high potential to be implemented.

CERTH agreed that although scenario A3 (Molten salt plant) presents the disadvantage of low efficiency of energy transformation, it is considered to be feasible. It is a technology already proven and used in Italy, Spain, U.S., China.





CERTH suggested that the following scenarios should be considered as micro-actions: A10 (Ancillary services provided by batteries), A16 (Lithium recovery form mine water), A17 (Usage of methane from degasification units on closed coal mines), A18 (Circular mining technologies based on waste heap materials recovery), A19 (Circular mining technologies scenario for pumped water material recovery), A20 (REE recovery from coal mining waste heaps), and A22 (Forest restoration at former open-pit coal mines).

CERTH proposed that A12 (Electrolysis powered by PV and/or Wind turbines, CCGT, Use of energy for recycling of minerals from pumped mine water) could be considered as an action because it provides numerous advantages, such as the production of energy via environmentally neutral sources (PV and/or Wind turbines), and the recycling of minerals from pumped mine water that contributes to circular economy.

During the meeting a consensus with respect to the criteria developed in Task 2.3. was reached, and the most important technical criteria directly related to the closure of coal mines and coal-fired power plants, criteria related to the introduction of new technologies into the plants were selected.

In summary, the following agreement were reached:

- to combine action A26 (Biomass combustion energy plant) with action A27 (Biofuels combustion energy plant);
- to combine action A5 (Cultural heritage and sports using green energy), action A21 (Green energy relax and extreme mine & plant) and action A25 (Cultural/Recreation areas);
- to combine A23 (ENERMINECOIN mine) and A24 (ENERMINECOIN power plant) into A24 (Large scale IT infrastructure - power plant);
- to change the following micro-actions into actions: A28 (Geothermal energy), A29 (Dense fluids), A30 (Gravitricity), and A31 (Hydro-pumping);
- to expand the area of action A11 (Combined Cycle Gas Turbines (CCGT) plant), and change the name of action A11 into Combined Cycle Gas Turbines (CCGT) plant, Open cycle gas turbines (OCGT);
- to expand the area of action A16 (Lithium recovery form mine water), and change the name of action A16 into Recovery of resources from mine water, in order to make it more generic and include all relevant technologies;
- to reduce the area of action A15 (Small modular reactors (SMRs), Open cycle gas turbines, CCGT), and change the name of A15 to Small modular reactors SMRs.

Furthermore, it was agreed that scenarios should be considered in two groups: main scenarios (actions) and accompanying/additional scenarios (micro-actions). It was also agreed that the proposed policies should be adapted to be fully compatible with the European Green Deal policy. As the technical criteria developed in Task 2.3 are related to the closure of the coal mine/coal-fired power plant itself, a consensus was reached





to introduce additional criteria that *sensu stricto* are related to the feasibility of implementing the analyzed scenarios.

# 4.2 Workshop on 18 August, 2022

The next meeting - internal to GIG - was held on 18 August 2022. During the meeting a first division of scenarios developed in Task 3.1 into 12 actions and 14 micro-actions was made. Also experts from different countries were proposed:

#### ACTIONS:

- A1 Virtual power plant (UNIOVI & HUNOSA, GIG),
- A2 Green hydrogen plant (UNIOVI&HUNOSA, GIG),
- A3 Eco-industrial park (UNIOVI&HUNOSA, GIG),
- A4 Cultural heritage and sports/recreation areas using green energy (GIG),
- A5 Floating PV panels at flooded open-pit coal mines (CERTH),
- A6 Agrophotovoltaics (APV) at former open-pit coal mine areas (CERTH),
- A7 Pumped hydroelectric storage (PHS) at former open-pit coal mines (CERTH),
- A8 Fisheries in flooded open-pit coal mines (CERTH, GIG),
- A9 Combined Cycle Gas Turbines plant. Open Cycle Gas Turbines plant (VGBE, GIG & GIG external experts),
- A10 Mine gas utilization for gas-powered CHP power units (VGBE, GIG & GIG external experts),
- A11 Open cycle gas turbine, block heat and power plant, gas engine (VGBE, GIG & GIG external experts),
- A12 Small modular reactors SMRs (VGBE, GIG & GIG external experts).

#### **MICRO-ACTIONS:**

- AM1 Ancillary services provided by batteries (VGBE, GIG & GIG external experts),
- AM2 Molten salt plant (UNIOVI&HUNOSA),
- AM3 Recovery of resources from mine water (THGA, GIG),





- AM4 Recovery of resources from coal mining waste heaps (THGA, GIG),
- AM5 Usage of methane from degasification units on closed coal mines (THGA, GIG external experts),
- AM6 Circular mining technologies based on waste heap materials recovery (UNIOVI&HUNOSA, GIG),
- AM7 Circular mining technologies for pumped water material recovery. (UNIOVI&HUNOSA, GIG),
- AM8 Forest restoration at former open-pit coal mines (CERTH),
- AM9 Large scale IT infrastructure power plant (GIG),
- AM10 Biofuels combustion energy plant (GIG external experts),
- AM11 Geothermal energy (UNIOVI&HUNOSA, GIG),
- AM12 Gravitricity (GIG),
- AM13 Dense fluids (UNIOVI&HUNOSA),
- AM14 Hydro-pumping (GIG).

The number of policies has also been reduced from 5 to 3 so that they are fully consistent with the European Green Deal policy:

- P1 Climate defined as no net emissions of greenhouse gases by 2050,
- P2 Growth defined as economic growth decoupled from fossils resources use,
- P3 People - defined as "no person and no place behind".

An additional economic criterion (CT 12 Returns on investments - benefits) was added to the 11 technical criteria, related to the process of coal mine and coal-fired power plant closure.

Eight criteria relating directly to the feasibility of implementing new technologies in closed coal mines and coal-fired power plants were also proposed:

• CM1 Energy security - defined as reliable, affordable access to all fuels and energy sources (IEA),





- CM2 Renewable resources (greening) defined as the elimination of the use of nonrenewable resources, use of renewable sources as much as technically and economically possible,
- CM3 Investment cost defined as an action investment cost CAPEX (the higher cost, the more demanding investment),
- CM4 Benefits defined as economic benefits, added-value from investment,
- CM5 Regional development defined as increased competitiveness of the region, prosperity, welfare, commercial and social impact on the area,
- CM6 Spatial planning defined as commercial and social impact on the area,
- CM7 Environment defined as an environmental and ecological impact,
- CM8 Job creation defined as an impact on employment.

It was decided that for the selected actions/micro-actions, evaluation should be carried out with the involvement of external experts. Due to lack of relevant experience and in order to increase the reliability of the results obtained, it was considered appropriate to include external experts in the assessment of the following actions: A8 (Combined Cycle Gas Turbines - CCGT plant. Open Cycle Gas Turbines OCGT plant), A9 (Mine gas utilization for gas-powered CHP power units), A10 (Small modular reactors SMRs), A11 (Biofuels processing energy plant), and a micro-action AM1 (Ancillary services provided by batteries).

In addition, the instructions for completing the matrixes have been prepared and revised. The manual described in detail the way of evaluation (Annex 1):

- Evaluation of actions and micro-actions with respect to technical criteria.
- Evaluation of actions and micro-actions with respect to MULTIPOL criteria.
- Evaluation of policies with respect to MULTIPOL criteria.

## 4.3 Workshop on 23 August, 2022

The next meeting at GIG was held on 23 August 2022. During the meeting the first analyses obtained using MULTIPOL for selected actions and micro-actions were presented.

Working meeting between GIG staff and external experts from Polish Power Plants Association and Tauron was held the same day remotely. At this meeting the matrixes





for the action A8 (Combined Cycle Gas Turbines CCGT plant. Open Cycle Gas Turbines OCGT plant) were developed. The results achieved during the expert analysis, with a brief comments, are presented in Table 6.

| Table 6. Results from an expert analysis with Polish Power Plants Association and Tauron |
|------------------------------------------------------------------------------------------|
| staff - Action A9                                                                        |

| Action | Technical<br>Criteria | Comments                                                                                                                                                           | Value |
|--------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| A8     | CT1                   | Proximity to industry has a "positive impact" -<br>cooperation, we have heat so we have to get it out of<br>the way.                                               | 15    |
| A8     | CT2                   | Even though the area is partly occupied this is an added value.                                                                                                    | 15    |
| A8     | СТ3                   | It would be ideal if there was a large plant next to the site that produces gas.                                                                                   | 18    |
| A8     | CT4                   | This is not a relevant criterion for Poland, but in other countries, once granted a licence for a plant, it gives the possibility to continue industrial activity. | 7     |
| A8     | CT5                   | A pipeline will be needed, which could be a problem. It should be noted that the overall restrictions for gas are less demanding.                                  | 5     |
| A8     | CT6                   | Criteria neutral, under the assumption that we do not need to carry out reclamation.                                                                               | 0     |
| A8     | CT7                   | Negative impact on installations.                                                                                                                                  | -5    |
| A8     | CT8                   | No impact.                                                                                                                                                         | 0     |
| A8     | CT9                   | A positive impact, water from a flooded mine is cleaner.                                                                                                           | 10    |
| A8     | CT10                  | A positive impact, the better water quality the more favourable.                                                                                                   | 10    |
| A8     | CT11                  | Cheaper than nuclear power, capital expenditure is less than for greenfield sites.                                                                                 | 7     |





| A8 | CT12 | Profits from the power market and heat sales. | 10 |
|----|------|-----------------------------------------------|----|
|    |      |                                               |    |

| Action | MULTIPOL<br>Criteria | Comments           | Value |
|--------|----------------------|--------------------|-------|
| A8     | CM1                  | No comments.       | 20    |
| A8     | CM2                  | Supports greening. | 10    |
| A8     | CM3                  | No comments.       | 7     |
| A8     | CM4                  | No comments.       | 10    |
| A8     | CM5                  | No comments.       | 5     |
| A8     | CM6                  | Lower emissions.   | 5     |
| A8     | CM7                  | No comments.       | 10    |

## 4.4 On-line workshop on 1 September, 2022

Next working meeting between GIG staff and external experts from Polish Power Plants Association and Tauron was held on 1 September 2022. During the workshop the matrixes for the action A11 (Small modular reactors SMRs) and micro-action AM1 (Ancillary services provided by batteries) were developed. The results achieved during the expert analysis, with a brief comments, are presented in Tables 7 and 8.

**Table 7.** Results from an expert analysis with Polish Power Plants Association andTauron staff - Action A11

| Action | Technical<br>Criteria | Comments                                                   | Value |
|--------|-----------------------|------------------------------------------------------------|-------|
| A11    | CT1                   | It all depends on the power of the reactor (up to 300 MW). | 18    |
| A11    | CT2                   | Infrastructure, water.                                     | 18    |
| A11    | СТ3                   | A problem with the mine, because land deformations         | 18    |





|     |      | have to be taken into account.                                                         |    |
|-----|------|----------------------------------------------------------------------------------------|----|
| A11 | CT4  | Positive, it is possible to use the existing infrastructure.                           | 5  |
| A11 | CT5  | Proximity to the mine and possible ground instability are significant.                 | 2  |
| A11 | CT6  | No impact.                                                                             | 0  |
| A11 | CT7  | No impact.                                                                             | 0  |
| A11 | CT8  | No impact.                                                                             | 0  |
| A11 | СТ9  | Water availability 'a plus', but water may cause uplift.                               | 15 |
| A11 | CT10 | The quality of water matters.                                                          | 10 |
| A11 | CT11 | The positives are the availability of the grid, water and roads. Expensive investment. | 7  |
| A11 | CT12 | Very expensive investment.                                                             | 2  |

| Action | MULTIPOL<br>Criteria | Comments                                                                                          | Value |
|--------|----------------------|---------------------------------------------------------------------------------------------------|-------|
| A11    | CM1                  | Very strong impact.                                                                               | 20    |
| A11    | CM2                  | With this technology, industry can be 'decarbonised',<br>but it is not itself a green technology. | 3     |
| A11    | CM3                  | No comments.                                                                                      | 15    |
| A11    | CM4                  | No comments.                                                                                      | 10    |
| A11    | CM5                  | Long construction time. Important investment.                                                     | 15    |
| A11    | CM6                  | Only the risk of plant failure and waste management are relevant.                                 | 18    |





| A11 | CM7 | Regional: supervision and control. Highly specialised workforce is needed. | 10 |
|-----|-----|----------------------------------------------------------------------------|----|
|     |     |                                                                            |    |

# **Table 8.** Results from an expert analysis with Polish Power Plants Association andTauron staff – micro-action AM1

| Action | Technical<br>Criteria | Comments                                                                                                                                                   | Value |
|--------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| AM1    | CT1                   | Indicated proximity.                                                                                                                                       | 15    |
| AM1    | CT2                   | Plenty of space.                                                                                                                                           | 15    |
| AM1    | СТ3                   | Network infrastructure (connections, security) is a positive. Larger set of batteries. Network connectivity is important.                                  | 20    |
| AM1    | CT4                   | It is not relevant.                                                                                                                                        | 5     |
| AM1    | CT5                   | Depends on the size of the battery. The electromagnetic field is irrelevant.                                                                               | 5     |
| AM1    | CT6                   | Low and high temperatures are harmful. Due to the need for a building, the location on the heap is dropped.                                                | 0     |
| AM1    | CT7                   | No impact.                                                                                                                                                 | 0     |
| AM1    | CT8                   | No Impact.                                                                                                                                                 | 0     |
| AM1    | CT9                   | No Impact.                                                                                                                                                 | 0     |
| AM1    | CT10                  | No Impact.                                                                                                                                                 | 0     |
| AM1    | CT11                  | There is no need to build either a line or a building, no cost to connect to the network.                                                                  | 20    |
| AM1    | CT12                  | It will avoid problems with the system. Securing the system. Cost of avoided losses. We are currently talking about 100-200 MW of storage. High cost - not | 8     |





|  | economical. |  |
|--|-------------|--|
|  |             |  |

| Action | MULTIPOL<br>Criteria | Comments                                                   | Value |
|--------|----------------------|------------------------------------------------------------|-------|
| AM1    | CM1                  | A strong relationship. Stabilisation function.             | 20    |
| AM1    | CM2                  | Allows the use of more renewable (non-controlled) sources. | 20    |
| AM1    | CM3                  | No comments.                                               | 5     |
| AM1    | CM4                  | No comments.                                               | 8     |
| AM1    | CM5                  | Low relation. More renewable sources could be used.        | 2     |
| AM1    | CM6                  | Low environmental impact. We use and recycle correctly.    | 1     |
| AM1    | CM7                  | No impact.                                                 | 0     |

## 4.5 Workshop on 2 September, 2022

Working meeting between GIG staff and external expert prof. Eugeniusz Krause was held on 2 September 2022. As a result of the meeting the matrixes for the action A9 (Mine gas utilization for gas-powered CHP power units) were developed. The results achieved during the expert analysis, with a brief comments, are presented in Table 9.

| Action | Technical<br>Criteria | Comments                                                                               | Value |
|--------|-----------------------|----------------------------------------------------------------------------------------|-------|
| A9     | CT1                   | There must be something done with the heat received, it must be close to the consumer. | 15    |
| A9     | CT2                   | Not much space is needed.                                                              | 5     |

Table 9. Results from an expert analysis with prof. Eugeniusz Krause - Action 9





| A9 | СТ3  | Warm gas.                                                                                                                        | 20  |
|----|------|----------------------------------------------------------------------------------------------------------------------------------|-----|
| A9 | CT4  | Gas pipeline required.                                                                                                           | 10  |
| A9 | CT5  | Slightly negative impact.                                                                                                        | -5  |
| A9 | CT6  | No impact.                                                                                                                       | 0   |
| A9 | CT7  | No impact.                                                                                                                       | 0   |
| A9 | CT8  | No impact.                                                                                                                       | 0   |
| A9 | СТ9  | A very high level of importance.                                                                                                 | -20 |
| A9 | CT10 | No impact.                                                                                                                       | 0   |
| A9 | CT11 | Costly, but not as costly as SMRs                                                                                                | -10 |
| A9 | CT12 | If pumping has to be maintained (this cost is dropped)<br>then the return on investment is 3-4 years (operation<br>10-12 years). | 15  |

| Action | MULTIPOL<br>Criteria | Comments           | Value |
|--------|----------------------|--------------------|-------|
| A9     | CM1                  | Low impact.        | 1     |
| A9     | CM2                  | No impact.         | 0     |
| A9     | CM3                  | Low impact.        | 5     |
| A9     | CM4                  | High impact.       | 15    |
| A9     | CM5                  | We have the heat.  | 3     |
| A9     | CM6                  | Surface emissions. | 15    |





| A9 | CM7 | Few people are needed for the service. | 2 |  |
|----|-----|----------------------------------------|---|--|
|----|-----|----------------------------------------|---|--|

# 4.6 Workshop on 13 September, 2022

Working meeting between GIG staff and external expert Mr. Zbigniew Gieleciak – President of the Regional Centre for Water and Wastewater Management was held on 13 September 2022. During the workshop the matrixes for the action A11 (Biofuels combustion energy plant) were developed. The results achieved during the expert analysis, with a brief comments, are presented in Table 10.

**Table 10.** Results from an expert analysis with Mr. Zbigniew Gieleciak – President ofthe Regional Centre for Water and Wastewater Management - Action A11

| Action | Technical<br>Criteria | Comments                                                                                                                                                               | Value |
|--------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| A11    | CT1                   | High impact, supply logistics, use of electricity<br>(provision of consumer - energy recovery plant/center),<br>combustion of biofuels (biodegradable/residual waste). | 10    |
| A11    | CT2                   | Burning of wastewater sludge > 5ha, products will need<br>to be recycled/optimized, potential for synergies.                                                           | 20    |
| A11    | СТ3                   | Access to grid, mine/fire water, biofuel delivery -<br>rail/road infrastructure.                                                                                       | 5     |
| A11    | CT4                   | New investment.                                                                                                                                                        | 0     |
| A11    | CT5                   | The waste disposal site, proximity to water reservoirs.                                                                                                                | -10   |
| A11    | СТ6                   | No impact.                                                                                                                                                             | 0     |
| A11    | CT7                   | No impact.                                                                                                                                                             | 0     |
| A11    | СТ8                   | No impact.                                                                                                                                                             | 0     |
| A11    | CT9                   | No impact.                                                                                                                                                             | 0     |





| A11 | CT10 | Ventilation from mines/radioactivity of mine water -<br>radon.                                       | 0 |
|-----|------|------------------------------------------------------------------------------------------------------|---|
| A11 | CT11 | Each mine has its own boiler house/chimney. It's easy to get 'hooked up' to this.                    | 5 |
| A11 | CT12 | Additional value for degraded areas. Infrastructure available, so investment return will be quicker. | 7 |

| Action | MULTIPOL<br>Criteria | Comments                                                                                                                                                                                                                                                           | Value |
|--------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| A11    | CM1                  | Increases regional/enterprise energy security.                                                                                                                                                                                                                     | 15    |
| A11    | CM2                  | Depends on whether we use renewable resources or<br>"green" waste.                                                                                                                                                                                                 | 15    |
| A11    | CM3                  | Low cost compared to other green technologies<br>(biomass/biofuels - installation runs 24h/365 days/year<br>- 8000 MWh/year on up to 1 ha; photovoltaics 100<br>MWh/year/1-1.5 ha; wind power 2200-2500 MWh/year<br>under the assumption of wind speed > 4.5 m/s). | 15    |
| A11    | CM4                  | Depends on the scale of the project and the potential for synergies (e.g. heating a water park).                                                                                                                                                                   | 10    |
| A11    | CM5                  | Increase regional development.                                                                                                                                                                                                                                     | 12    |
| A11    | CM6                  | High impact.                                                                                                                                                                                                                                                       | 15    |
| A11    | CM7                  | Scale of the project/ optimization of the staff.                                                                                                                                                                                                                   | 10    |

# 4.7 On-line Workshop on 14 September, 2022

On 14 September 2022, a workshop was held between the Partners in an on-line format. A brainstorming session resulted in the following decisions:

• Micro-action Molten salt plant was transferred to action group (A12 Molten salt plant).





- Micro-actions Recovery of resources from coal mining waste heaps and Circular mining technologies based on waste heap materials recovery were combined into micro-action AM2 Circular mining technologies based on waste heap materials recovery.
- Micro-actions *Recovery of resources form mine water* and *Circular mining technologies for pumped water material recovery* were combined into micro-action **AM4 Circular mining technologies for pumped water material recovery**.
- Micro-action Hydro-pumping was renamed AM10 Underground hydro-pumping.
- *Spatial planning* criteria from the MULTIPOL criteria (7 MULTIPOL criteria remain) was removed.

## 4.8 Workshop on 28 October, 2022

At the last meeting in GIG on 28 October 2022, the results obtained from the multicriteria analysis were discussed. An optimization of the matrices was performed by analyzing the results for similar technologies. By consensus, it was considered that the results for similar technologies could not diverge significantly from each other. The amendments are shown in tables 11 and 12 and were sent out to the Project Partners for verification.

| Action-<br>MULTIPOL<br>Criteria | Comments                                                                                                              | Old value | New value |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| A5-CM1                          | Value for action 5 should not be different with respect to action 1 (both use PV panels).                             | 15        | 10        |
| A6-CM1                          | PHS in open-coal mines is a proven<br>technology for energy storage so the value<br>should be higher.                 | 10        | 20        |
| A7-CM1                          | This value was lowered as experts were not<br>able to give a proof of this action on<br>influence on energy security. | 5         | 0         |
| A8-CM1                          | Due to the current situation with gas<br>(geopolitical context) it was proposed to<br>lower value to 15.              | 20        | 15        |

| Table 11. Results of revisions of Actions - MUL | TIPOL criteria |
|-------------------------------------------------|----------------|
| Table 11. Results of revisions of Actions - Mol | ITFOL CITCEITA |





| A12-CM1 | Proven technology for energy storage so<br>value 20 is proposed to keep it at the same<br>level as A10 and A6. | 18 | 20 |
|---------|----------------------------------------------------------------------------------------------------------------|----|----|
| A13-CM3 | It cannot be so different in respect to A1 and A5.                                                             | 0  | 8  |
| A5-CM4  | A5-CM4 Should be in the line with the benefits of A1 and A13.                                                  |    | 8  |
| A6-CM4  | The value was lowered compared with SMRs.                                                                      | 15 | 10 |
| A9-CM4  | The value was lowered compared with SMRs.                                                                      | 15 | 10 |
| A13-CM4 | Should be in the line with the benefits of A1 and A9.                                                          | 15 | 10 |
| A6-CM5  | PHS is implemented at open-coal mine which are in the most cases far from cities.                              | 15 | 10 |
| A5-CM7  | Changed to be in the line with the value for action A13.                                                       | 10 | 10 |
| A6-CM7  | A6-CM7 Changed to be in the line with the value for action A13.                                                |    | 10 |
| A7-CM7  | Changed to be in the line with the value for                                                                   |    | 10 |

Table 12. Results of revisions of Micro-actions - MULTIPOL criteria

| Micro-<br>actions –<br>MULTIPOL<br>criteria | Comments                                                                                                         | Old value | New value |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| MA3-CM1                                     | This technology does not secure such a high<br>energy security in comparison to other<br>storage technologies.   | 15        | 5         |
| MA3-CM2                                     | This value was lowered in comparison with other greening technologies.                                           | 15        | 5         |
| MA10-CM4                                    | During the normalisation process<br>(comparison with other actions) it was<br>decided to lower the value to 10.  | 20        | 10        |
| MA3-CM5                                     | During the normalisation process<br>(comparison with other actions) it was<br>decided to lower the value to 10.  | 15        | 10        |
| MA5-CM5                                     | After consensus meeting it was decided that<br>there is an impact of this action to the<br>regional development. | 0         | 5         |





Experts from CERTH proposed for action A7 (Fisheries in flooded open-pit coal mines) to increase the value given to criteria CM1 zero to 1 as, "Energy will be generated via biogas produced by fishery residues with the anaerobic digestion method".

By consensus, the remarks were accepted.

The final, consensus-based input to the MULTIPOL multi-criteria analysis from all partners and external experts is presented below (Tables 13-15).





|       |                                                                          |               |                 |                                      | Con                        | sensus va | lues                    |             |              |
|-------|--------------------------------------------------------------------------|---------------|-----------------|--------------------------------------|----------------------------|-----------|-------------------------|-------------|--------------|
| Actic | ons MULTIPOL Criteria                                                    | Actions short | CM1             | CM2                                  | CM3                        | CM4       | CM5                     | CM6         | CM7          |
|       |                                                                          | label         | Energy security | Renewable<br>resources<br>(greening) | Low investment<br>barriers | Benefits  | Regional<br>development | Environment | Job creation |
| A1    | Virtual power plant                                                      | A1_VIRTUAL    | 10              | 20                                   | 8                          | 10        | 10                      | 15          | 3            |
| A2    | Green hydrogen plant                                                     | A2_H2         | 15              | 20                                   | 4                          | 5         | 20                      | 20          | 5            |
| A3    | Eco-industrial park                                                      | A3_ECOPARK    | 10              | 15                                   | 10                         | 5         | 17                      | 15          | 20           |
| A4    | Cultural heritage and sports/recreation areas using green energy         | A4_TOURIST    | 5               | 5                                    | 10                         | 5         | 15                      | 20          | 5            |
| A5    | Floating PV panels at flooded open-pit coal mines.                       | A5_PANELS     | 10              | 15                                   | 10                         | 8         | 10                      | 15          | 5            |
| A6    | Pumped hydroelectric storage (PHS) at former open-pit coal mines         | A6_PHS        | 20              | 20                                   | 7                          | 10        | 10                      | 15          | 5            |
| A7    | Fisheries in flooded open-pit coal mines                                 | A7_FISHES     | 1               | 5                                    | 12                         | 10        | 10                      | 10          | 8            |
| A8    | Combined Cycle Gas Turbines (CCGT) plant. Open Cycle Gas Turbines (OCGT) | A8_C/O_CGT    | 15              | 10                                   | 13                         | 10        | 5                       | 5           | 10           |
| A9    | Mine gas utilization for gas-powered CHP power units                     | A9_MINEGAS    | 1               | 0                                    | 15                         | 10        | 3                       | 15          | 2            |
| A10   | Small modular reactors (SMRs)                                            | A10_SMR       | 20              | 3                                    | 2                          | 10        | 20                      | 18          | 15           |
| A11   | Biofuels processing energy plant                                         | A11_BIOFUE    | 15              | 15                                   | 15                         | 10        | 12                      | 15          | 10           |
| A12   | Molten salt plant                                                        | A12_SALT      | 20              | 20                                   | 16                         | 10        | 10                      | 15          | 5            |
| A13   | Agrophotovoltaics (APV) at former open-pit coal mine areas               | A13_APV       | 15              | 20                                   | 8                          | 10        | 10                      | 15          | 8            |

## Table 13. Evaluation of ACTIONS with respect to MULTIPOL CRITERIA





|                                 |                                                                     |                              | Consensus values |                                      |                            |          |                         |             |              |  |  |
|---------------------------------|---------------------------------------------------------------------|------------------------------|------------------|--------------------------------------|----------------------------|----------|-------------------------|-------------|--------------|--|--|
| Micro-actions MULTIPOL Criteria |                                                                     | Micro-actions<br>short label | CM1              | CM2                                  | CM3                        | CM4      | CM5                     | CM6         | CM7          |  |  |
|                                 |                                                                     |                              | Energy security  | Renewable<br>resources<br>(greening) | Low investment<br>barriers | Benefits | Regional<br>development | Environment | Job creation |  |  |
| AM1                             | Ancillary services provided by batteries                            | AM1_BATT                     | 20               | 20                                   | 15                         | 8        | 2                       | 1           | 0            |  |  |
| AM2                             | Circular mining technologies based on waste heap materials recovery | AM2_HEAPS                    | 0                | 0                                    | 10                         | 10       | 10                      | 16          | 5            |  |  |
| AM3                             | Usage of methane from degasification units on closed coal<br>mines  | AM3_C2H4                     | 5                | 5                                    | 10                         | 10       | 10                      | 15          | 5            |  |  |
| AM4                             | Circular mining technologies for pumped water material<br>recovery  | AM4_WATER                    | 0                | 10                                   | 10                         | 3        | 7                       | 15          | 5            |  |  |
| AM5                             | Forest restoration at former open-pit coal mines                    | AM5_FOREST                   | 0                | 0                                    | 15                         | 10       | 5                       | 20          | 5            |  |  |
| AM6                             | Large scale IT infrastructure - power plant                         | AM6_IT                       | 0                | 5                                    | 15                         | 15       | 0                       | 5           | 0            |  |  |
| AM7                             | Geothermal energy                                                   | AM7_THERMA                   | 20               | 20                                   | 16                         | 10       | 15                      | 20          | 5            |  |  |
| AM8                             | Gravitricity                                                        | AM8_GRAVIT                   | 15               | 15                                   | 2                          | 5        | 10                      | 10          | 5            |  |  |
| AM9                             | Dense fluids                                                        | AM9_FLUIDS                   | 20               | 20                                   | 5                          | 10       | 5                       | 20          | 5            |  |  |
| AM10                            | Underground hydropumping                                            | AM10_HPUMP                   | 20               | 20                                   | 2                          | 10       | 10                      | 20          | 5            |  |  |

## Table 14. Evaluation of MICRO-ACTIONS with respect to MULTIPOL CRITERIA



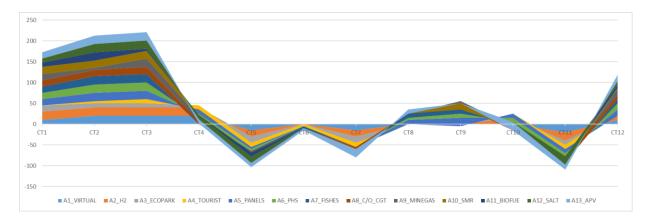


|     | icies Criteria                                                | CM1             | CM2                               | CM3             | CM4      | CM5                  | CM6         | CM7          | SUM  |
|-----|---------------------------------------------------------------|-----------------|-----------------------------------|-----------------|----------|----------------------|-------------|--------------|------|
| PUI |                                                               | Energy security | Renewable resources<br>(greening) | Investment cost | Benefits | Regional development | Environment | Job creation | 3011 |
| P1  | Climate (No net emissions of greenhouse gases by 2050)        | 40              | 20                                | 10              | 0        | 0                    | 30          | 0            | 100  |
| P2  | Growth (Economic growth decoulped from fossils resources use) | 20              | 10                                | 25              | 10       | 10                   | 5           | 20           | 100  |
| Р3  | People (No person and no place left behind)                   | 15              | 0                                 | 15              | 0        | 20                   | 10          | 40           | 100  |

## **Table 15**. Evaluation of POLICIES with respect to MULTIPOL CRITERIA



Deliverable 3.2 | Page 42 / 62




## 5 Result of analysis and discussion of the results

## 5.1 Result for the analysis technical criteria and actions/micro-actions

|            | -                                                                           | CT1                                                    | CT2                                              | CT3 | CT4                                             | CT5                   | CT6                                     | CT7                                    | CT8                                              | CT9                            | CT10                              | CT11                                           | CT12                                 |
|------------|-----------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|-----|-------------------------------------------------|-----------------------|-----------------------------------------|----------------------------------------|--------------------------------------------------|--------------------------------|-----------------------------------|------------------------------------------------|--------------------------------------|
| Actions    | Technical Criteria                                                          | Character of the local area /<br>proximity to industry | Available space for new<br>technologies/projects |     | Concessions, contracts<br>and other regulations | Land use restrictions | Waste heaps physical<br>characteristics | Waste heaps development<br>constraints | Material type<br>deposited on the<br>waste heaps | Flooding status of the<br>mine | Pumped water<br>chemistry/quality | Investment costs with<br>respect to greenfield | Returns on<br>investments (benefits) |
| A1_VIRTUAL | Virtual power plant                                                         | 10                                                     | 20                                               | 20  | 20                                              | -12                   | 0                                       | -20                                    | 0                                                | 0                              | 0                                 | 0                                              | 0                                    |
| A2_H2      | Green hydrogen plant                                                        | 20                                                     | 20                                               | 20  | 20                                              | -15                   | 0                                       | -15                                    | 0                                                | 0                              | 15                                | -20                                            | 10                                   |
| A3_ECOPARK | Eco-industrial park                                                         | 15                                                     | 10                                               | 10  | 5                                               | -15                   | 0                                       | -15                                    | 0                                                | -5                             | 10                                | -10                                            | 10                                   |
| A4_TOURIST | Cultural heritage and sports/recreation areas using green<br>energy         | 0                                                      | 5                                                | 10  | -10                                             | -10                   | -5                                      | -10                                    | 0                                                | 0                              | 0                                 | -10                                            | -10                                  |
| A5_PANELS  | Floating PV panels at flooded open-pit coal mines                           | 15                                                     | 20                                               | 20  | -10                                             | -5                    | 0                                       | 0                                      | 10                                               | 20                             | -10                               | -10                                            | 15                                   |
| A6_PHS     | Pumped hydroelectric storage (PHS) at former open-pit<br>coal mines         | 15                                                     | 20                                               | 20  | -10                                             | -5                    | 0                                       | 0                                      | 5                                                | 10                             | -10                               | -13                                            | 15                                   |
| A7_FISHES  | Fisheries in flooded open-pit coal mines                                    | 15                                                     | 20                                               | 20  | -15                                             | -5                    | -5                                      | 0                                      | 10                                               | 20                             | -20                               | -8                                             | 10                                   |
| A8_C/O_CGT | Combined Cycle Gas Turbines (CCGT) plant. Open Cycle<br>Gas Turbines (OCGT) | 15                                                     | 15                                               | 18  | 7                                               | 5                     | 0                                       | -5                                     | 0                                                | 10                             | 10                                | 7                                              | 10                                   |
| A9_MINEGAS | Mine gas utilization for gas-powered CHP power units                        | 15                                                     | 5                                                | 20  | 10                                              | -5                    | 0                                       | 0                                      | 0                                                | -20                            | 0                                 | -10                                            | 15                                   |
| A10_SMR    | Small modular reactors (SMRs)                                               | 18                                                     | 18                                               | 18  | 5                                               | 2                     | 0                                       | 0                                      | 0                                                | 15                             | 10                                | 7                                              | 2                                    |
| A11_BIOFUE | Biofuels processing energy plant                                            | 10                                                     | 20                                               | 5   | 0                                               | -10                   | 0                                       | 0                                      | 0                                                | 0                              | 0                                 | 5                                              | 7                                    |
| A12_SALT   | Molten salt plant                                                           | 10                                                     | 20                                               | 20  | -10                                             | -15                   | 0                                       | 0                                      | 0                                                | 0                              | 0                                 | -20                                            | 10                                   |
| A13_APV    | Agrophotovoltaics (APV) at former open-pit coal mine<br>areas               | 15                                                     | 20                                               | 20  | -10                                             | -10                   | -5                                      | -20                                    | 10                                               | 0                              | -20                               | -12                                            | 15                                   |

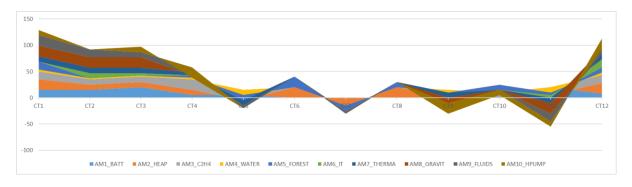
Tables 16 . Result for the analysis technical criteria and actions



### Figure 2. Cumulative layered graph showing the impact of technical criteria on actions

Analyzing the impact of technical criteria on action, it can be observed that (Figure 2):

- technical criteria CT5 (Land use restrictions), CT7 (Waste heaps development constraints) and CT11 (Investment costs with respect to greenfield) have a negative impact on the implications of new actions technologies in coal mines and/or coal-fired power plants destined for closure.
- technical criteria CT1 (Character of the local area / proximity to industry), CT2 (Available space for new technologies/projects), CT3 (Available infrastructures for new technologies/projects), and CT12 (Returns on investments - benefits) have a positive impact on the implications of new actions technologies in coal mines and/or coal-fired power plants destined for closure.


The other criteria have little (usually positive) or no impact.





|               |                                                                                        | CT1                                                    | CT2                                              | СТ3                                                           | CT4                                             | CT5                   | СТ6                                     | CT7                                    | CT8                                              | CT9                            | CT10                              | CT11                                           | CT12                                 |
|---------------|----------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------|-----------------------|-----------------------------------------|----------------------------------------|--------------------------------------------------|--------------------------------|-----------------------------------|------------------------------------------------|--------------------------------------|
| Micro-actions | Technical Criteria                                                                     | Character of the local area /<br>proximity to industry | Available space for new<br>technologies/projects | Available infrastructures<br>for new<br>technologies/projects | Concessions, contracts<br>and other regulations | Land use restrictions | Waste heaps physical<br>characteristics | Waste heaps development<br>constraints | Material type<br>deposited on the<br>waste heaps | Flooding status of the<br>mine | Pumped water<br>chemistry/quality | Investment costs with<br>respect to greenfield | Returns on<br>investments (benefits) |
| AM1_BATT      | Ancillary services provided by batteries                                               | 15                                                     | 15                                               | 20                                                            | 5                                               | 5                     | 0                                       | 0                                      | 0                                                | 0                              | 0                                 | 20                                             | 8                                    |
| AM2_HEAP      | Circular mining technologies based on waste<br>heap materials recovery                 | 20                                                     | 10                                               | 10                                                            | 10                                              | -10                   | 20                                      | -15                                    | 20                                               | 0                              | 0                                 | -15                                            | 20                                   |
| AM3_C2H4      | Usage of methane from degasification units on<br>closed coal mines                     | 15                                                     | 10                                               | 10                                                            | 20                                              | 20                    | 0                                       | 0                                      | 0                                                | 15                             | 10                                | 15                                             | 15                                   |
| AM4_WATER     | Circular mining technologies for pumped water<br>material recovery                     | 4                                                      | 2                                                | 2                                                             | 3                                               | -10                   | 0                                       | 0                                      | 0                                                | -5                             | 15                                | -10                                            | 5                                    |
| AM5_FOREST    | Forest restoration at former open-pit coal mines                                       | 15                                                     | 0                                                | 0                                                             | 5                                               | -10                   | 20                                      | -10                                    | 10                                               | 0                              | -10                               | -5                                             | 10                                   |
| AM6_IT        | Large scale IT infrastructure - green power plant<br>(energy from renewable resources) | 0                                                      | 10                                               | 5                                                             | 0                                               | 0                     | 0                                       | 0                                      | 0                                                | 0                              | 0                                 | -5                                             | 15                                   |
| AM7_THERMA    | Geothermal energy                                                                      | 10                                                     | 10                                               | 10                                                            | 5                                               | -10                   | 0                                       | 0                                      | 0                                                | -10                            | 0                                 | -10                                            | 20                                   |
| AM8_GRAVIT    | Gravitricity                                                                           | 20                                                     | 20                                               | 20                                                            | -5                                              | 0                     | 0                                       | 0                                      | 0                                                | -10                            | 0                                 | -20                                            | -10                                  |
| AM9_FLUIDS    | Dense fluids                                                                           | 20                                                     | 15                                               | 10                                                            | 15                                              | -5                    | 0                                       | -5                                     | 0                                                | 0                              | 0                                 | -15                                            | 10                                   |
| AM10_HPUMP    | Underground hydropumping                                                               | 10                                                     | 0                                                | 10                                                            | -20                                             | 0                     | 0                                       | 0                                      | 0                                                | -20                            | -10                               | -10                                            | 20                                   |

#### Tables 17. Result for the analysis technical criteria and micro-actions



## Figure 3. Cumulative layered graph showing the impact of technical criteria on microactions

Analyzing the impact of technical criteria on micro-action, it can be observed that (Figure 3):

- technical criteria CT5 (Land use restrictions), CT7 (Waste heaps development constraints), CT9 (Flooding status of the mine) and CT11 (Investment costs with respect to greenfield) have a negative impact on the implications of new microactions technologies in coal mines and/or coal-fired power plants destined for closure.
- technical criteria CT1 (Character of the local area / proximity to industry), CT2 (Available space for new technologies/projects), CT3 (Available infrastructures for new technologies/projects), CT6 (Waste heaps physical characteristics) CT8 (Material type deposited on the waste heaps) and CT12 (Returns on investments benefits) have a positive impact on the implications of new micro-actions technologies in coal mines and/or coal-fired power plants destined for closure.

The other criteria have little (usually positive) or no impact.





## 5.2 Result for the MULTIPOL analysis for actions

## 5.2.1 Evaluation of actions related to policies

This interface holds the scores of actions related to policies. In other words, these are calculated by applying the set of weights of the 'matrix evaluation of actions related to criteria' to the 'matrix of policies related to criteria'. Other information such as the mean, standard deviations and the rank of actions by policy can also be found in this matrix (Table 18).

|                 |                | POLICIES      |               |      | Standard<br>deviation |  |
|-----------------|----------------|---------------|---------------|------|-----------------------|--|
| ACTIONS         | P1:<br>Climate | P2:<br>Growth | P3:<br>People | Mean |                       |  |
| 1:A1_VIRTUAL    | 13,3           | 9,4           | 7,4           | 10   | 2,5                   |  |
| 2 : A2_H2       | 16,4           | 10,5          | 10,9          | 12,6 | 2,7                   |  |
| 3 : A3_ECOPARK  | 12,5           | 12,9          | 15,9          | 13,8 | 1,5                   |  |
| 4 : A4_TOURIST  | 10             | 8             | 9,2           | 9,1  | 0,8                   |  |
| 5 : A5_PANELS   | 12,5           | 9,6           | 8,5           | 10,2 | 1,7                   |  |
| 6 : A6_PHS      | 17,2           | 11,5          | 9,6           | 12,8 | 3,2                   |  |
| 7 : A7_FISHES   | 5,6            | 7,8           | 8,1           | 7,2  | 1,1                   |  |
| 8 : A8_C/O_CGT  | 10,8           | 11            | 9,7           | 10,5 | 0,6                   |  |
| 9 : A9_MINEGAS  | 6,4            | 6,4           | 5,3           | 6    | 0,5                   |  |
| 10 : A10_SMR    | 14,2           | 11,7          | 15,1          | 13,7 | 1,4                   |  |
| 11 : A11_BIOFUE | 15             | 13,2          | 12,4          | 13,5 | 1,1                   |  |
| 12 : A12_SALT   | 18,1           | 13,8          | 10,9          | 14,2 | 3                     |  |
| 13 : A13_APV    | 15,3           | 11,4          | 10,1          | 12,3 | 2,2                   |  |

Table 18. Evaluation of actions related to policies

The evaluation of actions with respect to the policy P1 (Climate) gave the highest ranks to actions: A12 (Molten salt plant), A6 (Pumped hydroelectric storage PHS at former open-pit coal mines), and A2 (Green hydrogen plant).





The evaluation of actions with respect to the policy P2 (Growth) gave the highest ranks to actions: A12 (Molten salt plant), A11 (Biofuels processing energy plant), and A3 (Eco-industrial park).

The evaluation of actions with respect to the policy P3 (People) gave the highest ranks to actions: A3 (Eco-industrial park), A10 (Small modular reactors - SMRs), and A11 (Biofuels processing energy plant).

## 5.2.2 Profile map: actions/policies

Figure 4 displays the policy score obtained for every action. It represents the matrix of evaluation of actions related to policies.







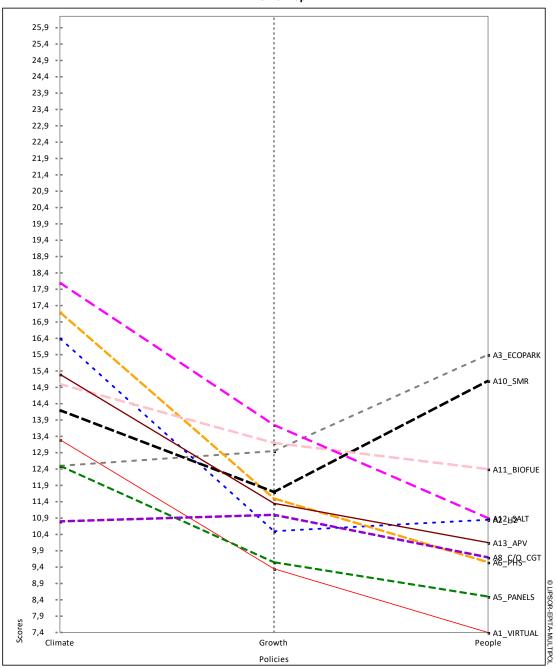
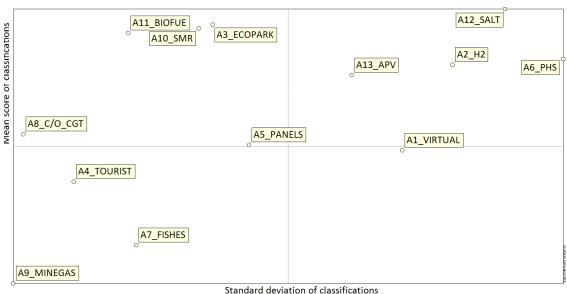



Figure 4. The policy score obtained for every action


## 5.2.3 Map of classification sensitivity: actions/policies

This map is created from data of the evaluation of actions related to policies matrix (Figure 5).





It represents action score (x-axis) related to the standard deviation calculated (y-axis).



#### **Classification sensitivity map**

Standard deviation of classifications

### Figure 5. Dependence between action score related to the standard deviation

The highest mean and the lowest standard deviation correspond to actions: A11 (Biofuels processing energy plant), A10 (Small modular reactors - SMRs), and A3 (Ecoindustrial park). This means that these actions have a high mean for all policies, while the resulting values for each of the three policies are close to each other.

The highest mean and the highest standard deviation correspond to actions: A13 (Agrophotovoltaics APV at former open-pit coal mine areas), A2 (Green hydrogen plant), A12 (Molten salt plant), and A6 (Pumped hydroelectric storage PHS at former open-pit coal mines).

### 5.2.4 Closeness map between actions and policies

This map is used to determine which actions are to be chosen whilst taking into consideration policies as well as convergences between policies and given actions (Figure 5).

This is achieved via Correspondence Analysis (CA) and is computed using the matrix of evaluation of actions related to policies.





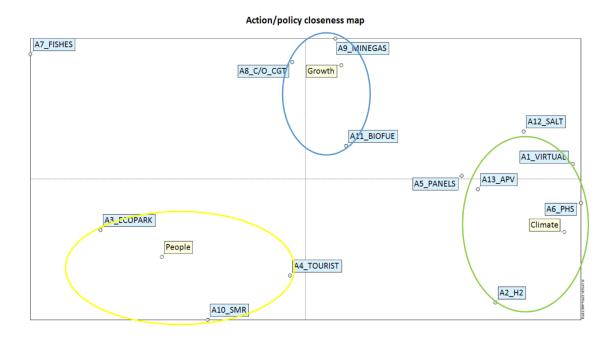



Figure 6. Action/policy closeness map

Based on this analysis, it can be concluded that the closest actions to the P1 policy (Climate) are (green ellipse): A6 (Pumped hydroelectric storage PHS at former open-pit coal mines), A1 Virtual power plant), and A2 (Green hydrogen plant) and A13 (Agrophotovoltaics APV at former open-pit coal mine areas).

The closest actions to the P2 policy (Growth) are (blue ellipse): A9 (Mine gas utilization for gas-powered CHP power units), A8 (Combined Cycle Gas Turbines – CCGT plant. Open Cycle Gas Turbines – OCGT plant), and A11 (Biofuels processing energy plant).

The closest actions to the P3 policy (People) are (yellow ellipse): A3 (Eco-industrial park), A10 (Small modular reactors - SMRs), and A4 (Cultural heritage and sports/recreation areas using green energy).

## 5.3 Result for the MULTIPOL analysis for micro-actions

## 5.3.1 Evaluation of micro-actions related to policies

This interface holds the scores of micro-actions related to policies. In other words, these are calculated by applying the set of weights of the 'matrix evaluation of microactions related to criteria' to the 'matrix of policies related to criteria'. Other information such as the mean and the standard deviations can also be found in this matrix (Table 19).





|                 |                | POLICIES      |               |      |                       |
|-----------------|----------------|---------------|---------------|------|-----------------------|
| MICRO-ACTIONS   | P1:<br>Climate | P2:<br>Growth | P3:<br>People | Mean | Standard<br>deviation |
| 1 : AM1_BATT    | 13,8           | 10,8          | 5,8           | 10,1 | 3,3                   |
| 2 : AM2_HEAPS   | 5,8            | 6,3           | 7,1           | 6,4  | 0,5                   |
| 3 : AM3_C2H4    | 8,5            | 7,8           | 7,8           | 8    | 0,3                   |
| 4 : AM4_WATER   | 7,5            | 6,2           | 6,4           | 6,7  | 0,6                   |
| 5 : AM5_FOREST  | 7,5            | 7,2           | 7,2           | 7,3  | 0,1                   |
| 6 : AM6_IT      | 4              | 6             | 2,8           | 4,2  | 1,3                   |
| 7 : AM7_THERMA  | 19,6           | 14,5          | 12,4          | 15,5 | 3                     |
| 8 : AM8_GRAVIT  | 12,2           | 8             | 7,6           | 9,2  | 2,1                   |
| 9 : AM9_FLUIDS  | 18,5           | 10,8          | 8,8           | 12,7 | 4,2                   |
| 10 : AM10_HPUMP | 18,2           | 10,5          | 9,3           | 12,7 | 3,9                   |

Table 19. Evaluation of micro-actions related to policies

The evaluation of micro-actions with respect to the policy P1 (Climate) gave the highest rank to micro-actions: AM7 (Geothermal energy), AM9 (Dense fluids), and AM10 (Underground hydro-pumping).

The evaluation of micro-actions with respect to the policy P2 (Growth) gave the highest rank to micro-actions: AM7 (Geothermal energy), AM1 (Ancillary services provided by batteries), and AM9 (Dense fluids).

The evaluation of micro-actions with respect to the policy P3 (People) gave the highest rank to micro-actions: AM7 (Geothermal energy), AM10 (Underground hydro-pumping), and AM9 (Dense fluids).

## 5.3.2 Profile map: micro-actions versus policies

These graphs (Figure 7) displays the policy score obtained for every micro-action. It represents the matrix of evaluation of micro-actions related to policies (from Table 20).





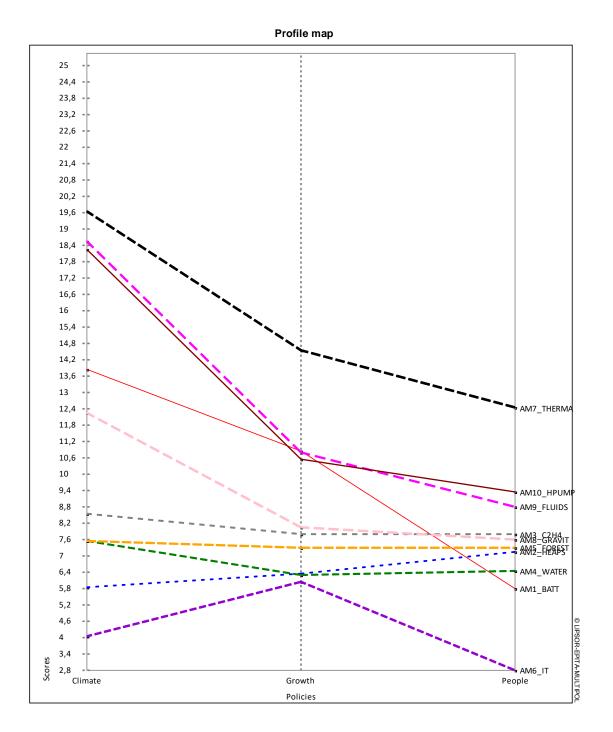
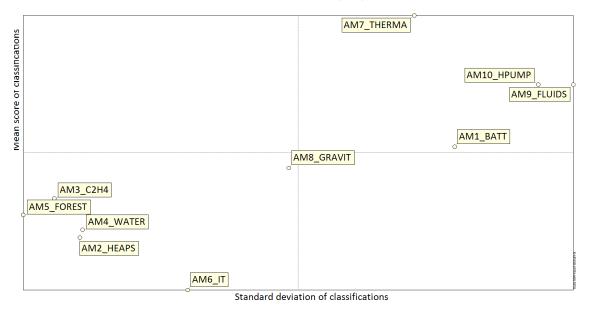



Figure 7. The policy score obtained for every micro-action


## 5.3.3 Map of classification sensitivity: micro-actions/policies

This map is created from data of the evaluation of micro-actions related to policies matrix (Figure 8).





It represents micro-action score (x-axis) related to the standard deviation calculated (y-axis).



#### **Classification sensitivity map**

### Figure 8. Dependence between micro-action score related to the standard deviation

None of the micro-actions have the high mean and low standard deviation.

The high mean but also a high standard deviation have micro-actions: AM7 (Geothermal energy), AM10 (Underground hydro-pumping), and AM9 (Dense fluids).

### 5.3.4 Closeness map between micro-actions and policies

This map is used to determine which micro-actions are to be chosen whilst taking into consideration policies as well as convergences between policies and given micro-actions (Figure 9).

This is achieved via Correspondence Analysis (CA) and is computed using the matrix of evaluation of micro-actions related to policies.





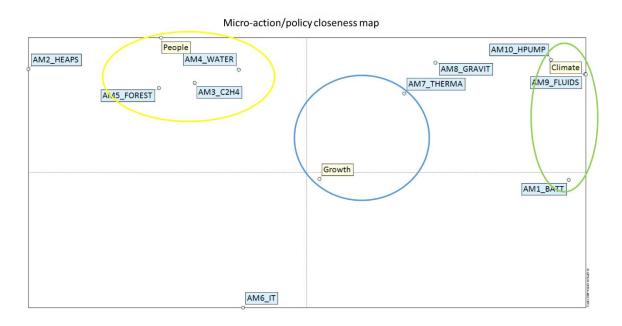



Figure 9. Micro-action/policy closeness map

Based on this analysis, it can be concluded that the closest micro-actions to the P1 policy (Climate) are (green ellipse): MA9 (Dense fluids), AM10 (Underground hydro-pumping), and AM1 (Ancillary services provided by batteries).

The closest action to the P2 policy (Growth) is AM7 (Geothermal energy) – blue circle.

The closest actions to the P3 policy (People) are (yellow ellipse): AM5 (Forest restoration at former open-pit coal mines), AM3 (Usage of methane from degasification units on closed coal mines), and AM4 (Circular mining technologies for pumped water material recovery).





## 6 Conclusions and lessons learnt

Two multi-criteria analyses were carried out: for 13 actions and for 10 micro-actions. Both actions and micro-actions were defined and analyzed morphologically with the MORPHOL software in Task 3.1. The analyses also used 7 criteria designed by consensus among project participants and 3 policies resulting directly from the principles of the European Green Deal. Additionally, analyses were performed on the impact of technical criteria on actions and micro-actions.

In Table 20, the summary results for the MULTIPOL analysis for actions are shown.

| Analysis 1: Evaluation of actions related to policies           |                                                                  |                                                                                |                                                                  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|--|--|--|--|
| Policy                                                          | Rank 1                                                           | Rank 2                                                                         | Rank 3                                                           |  |  |  |  |  |  |  |
| Climate policy                                                  | Molten salt plant                                                | Pumped hydroelectric storage<br>(PHS) at former open-pit coal<br>mines         | Green hydrogen plant                                             |  |  |  |  |  |  |  |
| Growth policy                                                   | Molten salt plant                                                | Biofuels processing energy plant                                               | Eco-industrial park                                              |  |  |  |  |  |  |  |
| People policy                                                   | Eco-industrial park                                              | Small modular reactors (SMRs)                                                  | Biofuels processing energy plant                                 |  |  |  |  |  |  |  |
| Analysis 2: Map of classification sensitivity: actions/policies |                                                                  |                                                                                |                                                                  |  |  |  |  |  |  |  |
| Sensitivity                                                     | Rank 1                                                           | Rank 2                                                                         | Rank 3                                                           |  |  |  |  |  |  |  |
| High mean/low standard deviation                                | Eco-industrial park                                              | Small modular reactors (SMRs)                                                  | Biofuels processing energy plant                                 |  |  |  |  |  |  |  |
| High mean/high standard deviation                               | Agrophotovoltaics (APV) at<br>former open-pit coal mine<br>areas | Green hydrogen plant                                                           | Molten salt plant                                                |  |  |  |  |  |  |  |
| Analysis                                                        | 3: Closeness map b                                               | between actions ar                                                             | nd policies                                                      |  |  |  |  |  |  |  |
| <b>Closeness to</b>                                             | Rank 1                                                           | Rank 2                                                                         | Rank 3                                                           |  |  |  |  |  |  |  |
| Climate policy                                                  | Pumped hydroelectric storage<br>(PHS) at former open-pit coal    | Virtual power plant                                                            | Agrophotovoltaics (APV) at<br>former open-pit coal mine<br>areas |  |  |  |  |  |  |  |
|                                                                 | mines                                                            |                                                                                | Green hydrogen plant                                             |  |  |  |  |  |  |  |
| Growth policy                                                   | Mine gas utilization for gas-<br>powered CHP power units         | Combined Cycle Gas Turbines<br>(CCGT) plant. Open Cycle Gas<br>Turbines (OCGT) | Biofuels processing energy plant                                 |  |  |  |  |  |  |  |
| People policy                                                   | Eco-industrial park                                              | Small modular reactors (SMRs)                                                  | Cultural heritage and sports/recreation areas using green energy |  |  |  |  |  |  |  |

## **Table 20**. Summary results of MULTIPOL analysis (actions)





The evaluation of actions with respect to the policy P1 (Climate) and to the policy P2 (Growth) the highest rank was given to action A12 (Molten salt plant), and with respect to the policy P3 (People) was given to action A3 (Eco-industrial park).

Analysis of the map of classification sensitivity shows that the highest mean for all three policies, with the lowest standard deviation, is characterized by actions: A3 (Eco-industrial park), A10 (Small modular reactors - SMRs), and A11 (Biofuels processing energy plant).

Closeness map analysis between actions and policies shows that the action A6 (Pumped hydroelectric storage (PHS) at former open-pit coal mines) is the closest to policy P1 (Climate), while action A9 (Mine gas utilization for gas-powered CHP power units) is the closest to policy P2 (Growth) and action A3 (Eco-industrial park) to policy P3 (People).

In Table 21, the summary results for the MULTIPOL analysis for micro-actions are shown.





| Analysis 1                        | Analysis 1: Evaluation of micro-actions related to policies |                                                                       |                                                                       |  |  |  |  |  |
|-----------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|--|--|--|
| Policy                            | Rank 1                                                      | Rank 2                                                                | Rank 3                                                                |  |  |  |  |  |
| Climate policy                    | Geothermal energy                                           | Dense fluids                                                          | Underground hydropumping                                              |  |  |  |  |  |
| Growth policy                     | Geothermal energy                                           | Ancillary services provided by batteries                              | Dense fluids                                                          |  |  |  |  |  |
| People policy                     | Geothermal energy                                           | Underground hydropumping                                              | Dense fluids                                                          |  |  |  |  |  |
| Analysis 2: Ma                    | ap of classification                                        | sensitivity: micro-a                                                  | actions/policies                                                      |  |  |  |  |  |
| Sensitivity                       | Rank 1 Ran                                                  |                                                                       | Rank 3                                                                |  |  |  |  |  |
| High mean/low standard deviation  |                                                             | None                                                                  |                                                                       |  |  |  |  |  |
| High mean/high standard deviation | Geothermal energy                                           | Underground hydropumping                                              | Dense fluids                                                          |  |  |  |  |  |
| Analysis 3: 0                     | Closeness map betw                                          | ween micro-action                                                     | s and policies                                                        |  |  |  |  |  |
| Closeness to                      | Rank 1                                                      | Rank 2                                                                | Rank 3                                                                |  |  |  |  |  |
| Climate policy                    | Dense fluids                                                | Underground hydropumping                                              | Ancillary services provided by batteries                              |  |  |  |  |  |
| Growth policy                     | Geothermal energy                                           | Nc                                                                    | ne                                                                    |  |  |  |  |  |
| People policy                     | Forest restoration at former<br>open-pit coal mines         | Usage of methane from<br>degasification units on closed<br>coal mines | Circular mining technologies<br>for pumped water material<br>recovery |  |  |  |  |  |

## Table 21. Summary results of MULTIPOL analysis (micro-actions)

The evaluation of micro-actions with respect to the policies the highest rank was given to AM7 (Geothermal energy) with respect to the policy P1 (Climate), the policy P2 (Growth) and the policy P3 (People).

None of the micro-actions have both a high mean and a low standard deviation relative to the all three policies. Analysis of the map of classification sensitivity shows that the highest mean for all three policies, with the high standard deviation, is characterized by micro-actions: AM7 (Geothermal energy), AM10 (Underground hydro-pumping), and AM9 (Dense fluids).





Closeness map analysis between micro-actions and policies shows that the microaction AM9 (Dense fluids) is the closest to policy P1 (Climate), micro-action AM7 (Geothermal energy) to policy P2 (Growth) and micro-action AM4 (Forest restoration at former open-pit coal mines) to policy P3 (People).

An additional analysis of the impact of the CT technical criteria on actions and microactions showed a wide variation in results, which was due to the wide range of technologies proposed. However, it can be noted that of all the technical criteria, a strong and negative impact is demonstrated between: technical criteria CT5 (Land use restrictions), and technical criteria CT 11 (Investment costs with respect to greenfield) as they have a negative impact on the implications of new actions and/or microactions technologies in coal mines and/or coal-fired power plants destined for closure.

One of the main problems encountered during the elaboration of this study was the non-uniform approach to the issue of certain actions and micro-actions in different countries, i.e. action A11 Biofuels processing energy plant is being perceived differently in Poland, than in Spain, where the availability of biofuels differs a lot. On the other hand, Micro-action AM7 Geothermal energy, which is not currently implemented in coal mines in Poland, has found application in closed coal mine in Spain. For this reason, a number of meetings were hold, including with external experts, to reach a final consensus on the values included in the analysis.

The first matrixes (Annex 2) differs significantly from the final matrixes. This is due to the fact that during the consecutive workshop meetings, the criteria, actions and policies evolved - by consensus the criteria were optimized, the policies were adapted to the European Green Deal policies, and the number of actions and micro-actions were reduced by combining similar technologies. This was successful despite the different perspectives on technologies by scientists and experts from different countries.

Although each scenario can be site specific, the exercise in Task 3.2 was to identify a set of actions and micro-actions that could be applied in the changing circumstances in closed coal mines and coal-fired power plants.

The results obtained in this study provide a good starting point for the design of specific business models, which often will be combinations of various actions and micro-actions.





## References

Godet M (1999): Creating the future. The Antidote 22:11–16

Godet M (2001): Creating Futures: Scenario Planning as a Strategic Management Tool. Economica, Paris

Panagiotopoulous M. & Stratigea A. (2014): A participatory methodological framework for paving alternative local tourist development paths—the case of Sterea Ellada Region. Eur J Futures Res (2014) 2:44. DOI 10.1007/s40309-014-0044-7

Voogd H (1983): *Multiple criteria evaluation for urban and regional planning*. Lion, London

Godet M, Monti R, Meunier F, Roubelat F (2004): *Scenarios and strategies: a toolbox for problem solving*. Cahiers du LIPSOR, Laboratory for Investigation in Prospective and Strategy, Paris

Stratigea A, Giaoutzi M (2012): *Scenario planning as a tool in foresight exercises: the LIPSOR approach*. In: Giaoutzi M, Sapio B (eds) Recent developments in foresight methodologies. Springer – Verlag, New York, pp 215–236

Lindgren M, Bandhold H (2003): *Scenario planning: the link between future and strategy*. Palgrave Macmillan, New York

Ringland G (2002): Scenarios in public policy. Willey, West Sussex

Robinson JB (1990): *Futures under glass; a recipe for people who hate to predict*. Futures 22:820–843

Schwartz P (1991): The art of the long view: planning for the future in an uncertain world. Currency Doubleday, New York

Stratigea A, Papadopoulou Ch-A (2013): *Evaluation in spatial planning: a participatory approach, Territorio Italia, Land Administration, Cadastre*. Real Estate, Agenzia del Territorio, 2, pp 85-97

Stratigea A, Giaoutzi M (2012): *Scenario planning as a tool in foresight exercises: the LIPSOR approach*. In: Giaoutzi M, Sapio B (eds) Recent developments in foresight methodologies. Springer – Verlag, New York, pp 215–236

Dodge, Y. (2003): The Oxford Dictionary of Statistical Terms, OUP ISBN 0-19-850994-4





## **Annex 1: MULTIPOL MATRIX INSTRUCTION MANUAL**

## MULTIPOL ANALYSIS INSTRUCTION MANUAL

#### First step: Assessing the impact of technical criteria on proposed actions

In the **matrix 1** we evaluate the impact of the technical criteria (labelled CT 1 to CT 12) on the proposed actions and micro-actions (labelled A1 to A25). The expert evaluates each impact on a scale from 0 (no impact) to 20 (the strongest impact). When the criteria has a negative impact on the action we enter a negative weight – a value of (-20) determine the strongest negative impact.

#### Example:

| litetra | Instructions: the axoing of axions (income from AL to A25) with respect to attend (in columns from CPL to CPL2) goes from 40 (the shorepertinged) to 20 (the shorepertinged) to 20 (the shorepertinged). A value of 0 indicates no impact (neutral impact) restriction in a diversified at the action. |                  |                                      |                            |                                            |                                     |               |                          |                           |                                    |            |                          |              |                    |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------|----------------------------|--------------------------------------------|-------------------------------------|---------------|--------------------------|---------------------------|------------------------------------|------------|--------------------------|--------------|--------------------|
| _       | /                                                                                                                                                                                                                                                                                                      |                  | CT1                                  | CE                         | CTB                                        | CT                                  | CTS           | CT6                      | CT7                       | CTS                                | CTO        | CT10                     | CT11         | CT12               |
| Actions | s Technical Criteria                                                                                                                                                                                                                                                                                   | Arim/Arm<br>adam | Concernitebolium)<br>process teaders | hildi ya kuw<br>zinkasi ta | kriidė olianzas.<br>Tans-<br>arbaigojinjos | Enament, anara<br>Ind aborrgalizati | Lad weekscore | Missiappipal<br>denomina | Missiapdeigner<br>cassion | Manilap<br>dependia dewara<br>larp | Fadgeouile | Fungdaran<br>Antongjalog | li-services. | kuna<br>waxaafada) |
| A1      | Winail poor plac                                                                                                                                                                                                                                                                                       | Ross.            | 10                                   | 10                         | 20                                         | 20                                  | -10           | 0                        | -20                       | 0                                  | 0          | 0                        | 0            | 0                  |

#### Second step: Multi-criteria analysis performed with MULTIPOL software

For the purposes of multi-criteria analysis with the MULTIPOL software, it is necessary to perform two matrix:

- Matrix 2: Evaluation of relationships of actions (A) with respect to criteria (CM).
- Matrix 3: Evaluation of relationships of policies (P) with respect to criteria (CM).

The **matrix 2** presents the evaluation of actions (labelled A1 to A25) with respect to criteria (labelled CM1 to CM 7). The scoring of actions with respect to criteria goes from 0 (no relationship) to 20 (the strongest relationship). We do not distinguish in this analysis whether the relationship is positive or negative.

#### Example:

| 1 | Instructions: the scoring of actions (in rows from A1 to A25) with respect to MULTIPOL criteria (in columns from CM1 to CM7) goes from 0 (no relationship |                      |                                |            |                                     |               |         |                         |                  |               |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------|------------|-------------------------------------|---------------|---------|-------------------------|------------------|---------------|
|   | between actions and criteria) to 20 (the strongest relationship between actions and criteria).                                                            |                      |                                |            |                                     |               |         |                         |                  |               |
|   | Actions <u>Criteria</u>                                                                                                                                   |                      |                                | CMI        | CM2                                 | CM3           | CM4     | CM5                     | CM6              | CM7           |
|   |                                                                                                                                                           |                      | A Fire (All inter-<br>actions) | Earg worky | Revenuel in communes<br>Egyptimized | in minori cut | Brandin | Regional dist eleptroni | E már un organ i | Jak crost law |
|   | 1                                                                                                                                                         | Virtual passer plant | Addeed                         | 10         | 20                                  | 0             | 10      | 10                      | 10               | 0             |

The **matrix 3** presents the evaluation of policies (labelled P1 to P3) with respect to criteria (labelled CM1 to CM 7). As this concerns the set of relationships weights, the row sum must always equal 100. There is no maximum limit to the value of the weights entered – in the extreme case one weight equal 100, if the rest of the relationship is rated 0. We do not distinguish in this analysis whether the relationship is positive or negative.

#### Example:

| Instructions: Matrix values correspond to policy evaluation with respect to the criteria. As this concerns the set of criteria weights, the row must always equal 100. |                                                        |    |                                  |               |         |                    |             |           |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----|----------------------------------|---------------|---------|--------------------|-------------|-----------|-----|
|                                                                                                                                                                        | Policies Criteria                                      |    | CM2                              | CM3           | CM4     | CM5                | CM6         | CM7       | SUM |
|                                                                                                                                                                        |                                                        |    | Renevable-resources<br>(proving) | la strent cos | Bearlis | Reșinal devloperez | Environment | planation |     |
| P1                                                                                                                                                                     | Climate (No net emissions of greenhouse gases by 2050) | 10 | 35                               | 25            | 0       | 10                 | 10          | 10        | 100 |





# Annex 2: THE FIRST VERSION OF THE MATRIXES WITH CRITERIA, POLICES AND ACTIONS

## Criteria:

| No. | Variable                                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C1  | Character of the local area /                           | This variable refers to the characteristics of the surrounding areas: urban, suburban, villages, agricultural,<br>industrial, post-industrial, etc. The character of local areas determines the kind and quantities of<br>infrastructure facilities and connectivity, the local economic development, the ecological value and                                                                                                                                                                                                                                                                                                                |
|     | proximity to industry                                   | potentials of the area, etc. The characteristic of the surrounding areas will be crucial for some business<br>opportunities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C2  | Available space for new technologies/projects           | This variable refers to the accessible space for new technologies installation (apart from waste disposal areas). The space consists of all the area provided from the surroundings of coal mines and power plants. The available area of an end-of-life coal mine and power plant that can be used for the deployment of alternative technologies is considered a major asset (apart from waste disposal areas).                                                                                                                                                                                                                             |
| C3  | Available infrastructures for new technologies/projects | The variable refers to infrastructure that may facilitate the adaptation of the power plant (internal and external). Internal infrastructure: water demineralization, water decarbonation, hydrogen cooling, turbine oil installation, desulphurization, NO <sub>x</sub> reduction, dust reduction, ash removal, steam production, coal transportationinfrastructure, CO <sub>2</sub> capture installation. External infrastructure: water treatment plant, raw water pumping station, landfills, temporary storage areas, power distribution/transmission grid connection, water accessibility, road infrastructure, railway infrastructure. |
| C4  | Concessions, contracts and other regulations            | Variable refers to obligations such as to provide thermal energy supply after the decommissioning or arising from concessions, contracts and others, which may condition the future repurposing of the coal power plant. It refers to also, the amount of time (vears) during which the power plant will still have the                                                                                                                                                                                                                                                                                                                       |
| C5  | Land use restrictions                                   | This variable refers to any kind of land use restrictions different from waste heaps, mainly related with territorial development plans approved by the authorities, that may condition specific industrial, commercial, business centers or residential deployments. The optimization of the areas should be based on socio-economic and environmental criteria helping to achieve sustainable development with the intention of increasing economic gains and improving environmental quality, but it is limited by present territorial development plans that, in some cases, are susceptible to be changed by the authorities.            |
| C6  | Waste heaps physical<br>characteristics                 | Variable refers to waste heap physical characteristics - geotechnical stability, angel of natural response, geomorphic shape and waste heap's height and area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C7  | Waste heaps development<br>constraints                  | Variable refers to waste heap development constraints (gas and fire hazards, status of reclamation).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| C8  | Material type deposited on the<br>waste heaps           | This variable refers to the specific characteristics of the materials that are deposited in the waste heaps, as well as if they are separated in extractive waste and coal processing waste or mixed together. Depending on the mining companies, extracting wastes and coal processing wastes are deposited together or separately. In case that they are deposited separately, it may be possible to extract valuable substances (rare earth minerals) from coal processing wastes.                                                                                                                                                         |
| С9  | Flooding status of the mine                             | The variable describes the flooding status of a liquidated mine, related to the depth to which it was<br>flooded and the flooded area and to monitoring of flooded level, hydrogeological and geotechnical<br>aspects.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C10 | Pumped water<br>chemistry/quality                       | The variable determines the quality and chemistry of pumped mining water (salt, hazardous substances).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C11 | Investment costs                                        | The variable refers to the investment costs to be taken into account when designing the use of closed coal mines/electric power plants to adapt the existing infrastructure to new economic activities (renovations, modifications, purchase of new equipment).                                                                                                                                                                                                                                                                                                                                                                               |





## POLICY:

| No. | Policy             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P1  | Energy security    | Energy security is the relationship between national security and the availability of natural resources for energy consumption. Moving<br>away from fossil fuels requires increased production of other types of energy, including green energy, as well as energy storage. Main<br>threats of energy security are: political or domestic instability of energy-producing countries, reliance on foreign countries for oil/gas,<br>manipulation of energy sources and unreliable energy stores.                                                                                                                                                                                                                                                                                                                                                                                                |
| P2  | Job creation       | The positive job creation effect of renewable energy is a result of longer and more diverse supply chains, higher labour intensity, and increased net profit margins. Jobs in renewable energy can be created directly and indirectly along the entire value chain, including in the manufacturing and distribution of equipment; the production of inputs such as chemicals; or even in services like project management, installation, operation, and maintenance. Those working in the agricultural sector, particularly women and the youth, can benefit from job increases in the harvesting of feedstock and other biomass. Improved energy supply through renewable sources can also contribute to the expansion of existing economic activities in other sectors. Jobs created through renewable energy production furthermore carry the benefit of less hazardous working conditions. |
| P3  | Climate mitigation | Transitioning away from fossil fuel-based energy production to green energy from renewable sources will have a positive impact on the climate, including the potential to reduce the intensity of negative its change.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| P4  | Economic grow th   | An energy transition based on renewable energy sources can stimulate economic growth, create new jobs and improve people's living conditions. There is also a significant impact on economic growth by significantly reducing the supply of fossil fuels from outside the EU, as green energy jobs will be located within the EU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Scenarios/Actions:



#### No. Action Description Company The action refers to the renewable energy produced (solar photovoltaic and wind power on the waste heaps, unconventional pumped hydro storage using dense fluids, geothermal A1 Virtual power plant UNIOVI/HUNOSA energy), will be sold to the grid or used to power companies with constant energy consumption located in the near area, such as factories or green data centres The action refers to green hydrogen plant where renewable hydrogen will be produced by electrolysis of mine water and electricity from renewable sources. It is a clear alternative to A2 Green hydrogen plant selling renewable energy to the grid or to power industries with constant energy consumption. The energy produced will be used to power electro-intensive industries located close to the UNIOVI/HUNOSA area. The action refers to no pumped hydro storage is possible, one of the technologies with some pilot plants already implemented around the world are Molten salt plants, using energy storage in the form of tanks with heated molten salt. They allow to smooth the fluctuation of renewable energies such as solar and wind. Nevertheless, and in order to achieve better UNIOVI/HUNOSA efficiencies, they preferable should be coupled with concentrated solar power (CSP) plants where a heat transfer fluid (HTF) such as oil absorbs the energy. he action refers to eco-industrial parks, which are an integrated alternative for sustainable energy generation technologies and circular economy contributions at these sites. The mai objective of industrial parks is to reduce waste and pollution by promoting short distance transport, optimizing material, resource and energy flows within the industrial parks. Eco-industrial park A4 UNIOVI/HUNOSA tainable energy generation technologies comprise solar and wind energy production together with energy storage, as well as geothermal energy in order to provide cooling/heating t the companies/industries that will take part of the Eco-industrial park. A5 Cultural heritage and sports using green energy The action assumes the production of green energy at the coal mine and coal-fired power plant while adapting them for tourism purposes GIG The action refers the use of floating PV panels at flooded open-pit coal mines. The lake water will be used for the required cooling of the floating PV panels. Possible synergies include CERTH A6 Floating PV panels at flooded open-pit coal mines forest restoration of the broader area, whereas extracting critical metals from mining wastes will contribute to a circular economy The proposed The action concerns the implementation of aerophotovoltaics (APV) at former open-pit coal mines. Synergies with local customers who own small-scale solar panels will A7 Agrophotovoltaics (APV) at former open-pit coal mine areas CERTH be arranged. Forest restoration at the areas of the open-pit mine will be considered for further reduction of GHG emissions. The action refers to implementing pumped hydroelectric storage (PHS) at former open-pit coal mines. The synergies that will be developed include a wind farm and a solar power plant ir A8 Pumped hydroelectric storage (PHS) at former open-pit coal mines the broader mining area. In addition, synergies with local customers who own small-scale solar panels will be arranged. Using waste water in soil additives coupled with the extraction CERTH of critical metals from mining wastes will contribute to a circular economy. The development of fisheries in flooded open-pit coal mines is an unconventional The action of incremental innovation that integrates already developed methods that have not beer implemented together at a former coal mine. Energy will be generated via biogas produced by fishery residues with the anaerobic digestion method. Developing an ecotoxicity laboratory A9 Fisheries in flooded open-pit coal mines. will provide constant monitoring of the water quality. The laboratory will also promote significant scientific research concerning the effects of possible hazardous substances on fish. CERTH The production of fish by-products from fish wastes, such as fish glue, oil for paints and resins, will contribute to circular economy The action refers to ancillary services provided by batteries that support the transmission of electricity from its generation site to the customer or helps maintain its usability Ancillary services provided by batteries VGB throughout the system. The action refers to use of coal-fired power plant infrastructure to combined-cycle plant works to produce electricity and captures waste heat from the gas turbine to increase efficiency A11 Combined Cycle Gas Turbines (CCGT) plant VGB and electrical output ectrolysers powered by PV and/or Wind turbines. CCGT, Use of energy for recycling A12 The action refers to use of green energy (electroluser powered by PV and/or wind turbines, Combined Cycle Gas Turbine) for recycling of minerals from pumped mine water VGB minerals from pumped mine water A13 Mine gas utilization for gas-powered CHP power units The action refers to use of utilization mine gases fo gas-powewred CHP (Combined Heat and Power) units. VGB A14 Open cycle gas turbine, block heat and power plant, gas engine The action assumes the use of coal-fired power plant/mine infrastructure to produce clean energy using open cycle gas turbine, block heat and power plant, gas engine VGB The action assumes the use of coal-fired power plant/mine infrastructure to produce clean energy using small modular reactors (SMRs), open cycle gas turbines, and CCGT (Combined A15 Small modular reactors (SMRs), Open cycle gas turbines, CCG VGB Cycle Gas Turbines). A16 Lithium recovery form mine water The action refers to recovery lithium from pumped mine water THGA A17 Usage of methane from degasification units on closed coal mine The action refers to use of methane from degasification units on closed coal mines. THGA The action refers to the circular mining technology based on waste heap materials recovery. The fact that wastes are landfilled separately according to their characteristics is very Circular mining technologies based on waste heap materials recovery UNIOVI/HUNOSA important. On the other hand, it should be possible to install a material recovery plant, something that has to be permitted according to the territory development plant. The action refers to the circular mining technologies The action for pumped water material recovery - should be necessary to install a mine water treatment plant and no land use A19 Circular mining technologies scenario for pumped water material recovery UNIOVI/HUNOSA restriction are foreseen The action refers to REE recovery from coal mining waste heaps can be combined with other The actions contributing to the circular economy. It provides alternative REE resources A20 CERTH REE recovery from coal mining waste heaps without the need for a mining licence, also minimising the existing or coal wastes Green energy relax and extreme mine & plant (trail tracks, etc.) The action refers to use mine waste dumps and underground workings for extreme sports. GIG The action refers to reforestation of the former open-pit coal mines will give several advantages that include the decrease of GHG emissions, as well as the protection against natural A22 Forest restoration at former open-pit coal mines CERTH hazards (such as landslides and flooding events). A23 The action refers to use of mining infrastructure for "mining" cryptocurrencies (bitcoin, stabecoin, etc) and secure data collection and storage using green energy GIG A24 ENERMINECOIN - power plant GIG The action refers to use of coal power plant infrastructure for "mining" cryptocurrencies (bitcoin, stabecoin, etc) and secure data collection and storage using green energy GIG A25 Cultural/Recreation areas A26 Biomass combustion energy plant GIG

**POTENTIALS** 

GIG

RECS AM PROJECT



A27

Biofuels combustion energy plant